8.325 Homework 6
Iain Stewart, April 18, 2008
Due: Thur. May 1.

Problem 1) Peskin & Schroeder, Problem 19.1, page 686-687

Problem 2) Axial-Anomaly in Dimensional Regularization

Compute the axial anomaly for QED in four-dimensions from the triangle diagram using dimensional regularization (show all your steps i.e. not just those displayed in Peskin). Demonstrate that your result is equivalent to a matrix element of the operator equation

\[\partial_{\mu} j^{\mu 5} = -\frac{e^2}{16\pi^2} F^{\alpha \beta} \tilde{F}_{\alpha \beta} \]

which we discussed in two different ways in lecture.

Problem 3) Baryon and Lepton Number

Let \(B^{\mu} \) be the current for baryon number, and \(L^{\mu} \) be the current for lepton number. Show that \(B^{\mu} \) has an anomaly, but that \(B^{\mu} - L^{\mu} \) does not.

Problem 4) The decays \(\pi^0 \rightarrow \gamma \gamma \) and \(\eta \rightarrow \gamma \gamma \)

a) Compute the matrix element and the decay rate \(\Gamma_{\pi^0} \) for \(\pi^0 \rightarrow \gamma \gamma \) through the anomaly. (You may use results from lecture.) Using the experimental values for \(m_\pi \) and \(f_\pi \) compare your result with the experimental value for the decay rate in the PDG (http://pdg.lbl.gov/).

b) Consider \(\eta^0 \), the 8'th Goldstone boson of the spontaneous symmetry breaking \(SU(3)_L \times SU(3)_R \rightarrow SU(3)_V \) in QCD. Assume that the decay \(\eta^0 \rightarrow \gamma \gamma \) also proceeds through the axial anomaly and compute \(\Gamma_{\eta^0}/\Gamma_{\pi^0} \).