Problem 1

a) [10 pts] Use the forced harmonic oscillator discussion in QM to derive the expression,

\[Z_0[j] = e^{-\frac{1}{2} \int d^4xd'x'j(x)\Delta_F(x-x')j(x')} Z_0[0] \]

for a free scalar field theory of mass \(m \). Here

\[\Delta_F(x-x') = \int \frac{d^4k}{(2\pi)^4} \frac{e^{-ik(x-x')}}{k^2 - m^2 + i\epsilon}. \]

Hint: One way of doing this is to work in a box and expand the field in a (spatial) Fourier expansion

\[\phi(x) = \frac{1}{\sqrt{V^3}2} \sum_k e^{ik\cdot x} q_k(t) \]

to convert the free scalar field Lagrangian to a sum over harmonic oscillator Lagrangians. Then use theQM result and take the continuum limit.

b) [5 pts] Show that the this Feynman propagator corresponds to having +(-) frequency solutions going forward (backward) in time.

c) [5 pts] Calculate \(G_2(x,x') \) in the operator (canonical) formalism of the free scalar field theory and show that you get \(i\Delta_F(x-x') \).

Problem 2

[10 pts] Scattering from an external potential: A real scalar field \(\phi \) has an interaction \(\mathcal{L}_I = U(x)\phi^2(x) \), with a time independent potential \(U \).

Show that to lowest order in \(U \), the S-matrix element for a incoming boson with momentum \(k = (\omega,k) \) to be scattered to a state with momentum \(k' = (\omega',k') \) is given by,

\[\langle k' | S | k \rangle = \frac{2\pi^\delta(\omega' - \omega)}{(2\sqrt{\omega})^{1/2}(2\sqrt{\omega'})^{1/2}} 2\tilde{U}(k' - k) \]

where \(\tilde{U}(q) = \int d^3xe^xU(x)e^{-iq\cdot x}. \)

Problem 3

[30=10+5+5+10] Peskin and Schroeder Problem 4.3 (see attached)
4.3 Linear sigma model. The interactions of pions at low energy can be described by a phenomenological model called the linear sigma model. Essentially, this model consists of N real scalar fields coupled by a ϕ^4 interaction that is symmetric under rotations of the N fields. More specifically, let $\Phi^i(x), i = 1, \ldots, N$ be a set of N fields, governed by the Hamiltonian

$$H = \int d^3x \left(\frac{1}{4}(\Pi^i)^2 + \frac{1}{2}(\nabla \Phi^i)^2 + V(\Phi^2) \right),$$

where $(\Phi^i)^2 = \Phi \cdot \Phi$, and

$$V(\Phi^2) = \frac{1}{2}m^2(\Phi^i)^2 + \frac{1}{4}((\Phi^i)^2)^2$$

is a function symmetric under rotations of Φ. For (classical) field configurations of $\Phi^i(x)$ that are constant in space and time, this term gives the only contribution to H; hence, V is the field potential energy.

(What does this Hamiltonian have to do with the strong interactions? There are two types of light quarks, u and d. These quarks have identical strong interactions, but different masses. If these quarks are massless, the Hamiltonian of the strong interactions is invariant to unitary transformations of the 2-component object (u,d):

$$\begin{pmatrix} u \\ d \end{pmatrix} \rightarrow \exp(i\alpha \cdot \sigma/2) \begin{pmatrix} u \\ d \end{pmatrix}.$$}

This transformation is called an isospin rotation. If, in addition, the strong interactions are described by a vector "gluon" field (as is true in QCD), the strong interaction Hamiltonian is invariant to the isospin rotations done separately on the left-handed and right-handed components of the quark fields. Thus, the complete symmetry of QCD with two massless quarks is $SU(2) \times SU(2)$. It happens that $SO(4)$, the group of rotations in 4 dimensions, is isomorphic to $SU(2) \times SU(2)$, so for $N = 4$, the linear sigma model has the same symmetry group as the strong interactions.)
(a) Analyze the linear sigma model for $m^2 > 0$ by noticing that, for $\lambda = 0$, the Hamiltonian given above is exactly N copies of the Klein-Gordon Hamiltonian. We can then calculate scattering amplitudes as perturbation series in the parameter λ. Show that the propagator is

$$\Phi^i(x) \Phi^j(y) = \delta^{ij} D_F(x - y),$$

where D_F is the standard Klein-Gordon propagator for mass m, and that there is one type of vertex given by

$$\begin{array}{c}
 k \\
 i \\
 j \\
 l
\end{array} = -2i\lambda (\delta^{ij}\delta^{kl} + \delta^{ik}\delta^{jl} + \delta^{il}\delta^{jk}).$$

(That is, the vertex between two Φ^1s and two Φ^2s has the value $(-2i\lambda)$; that between four Φ^1s has the value $(-6i\lambda)$.) Compute, to leading order in λ, the differential cross sections $d\sigma/d\Omega$, in the center-of-mass frame, for the scattering processes

$$\Phi^1 \Phi^2 \rightarrow \Phi^1 \Phi^2, \quad \Phi^1 \Phi^1 \rightarrow \Phi^2 \Phi^2, \quad \text{and} \quad \Phi^1 \Phi^1 \rightarrow \Phi^1 \Phi^1$$

as functions of the center-of-mass energy.

(b) Now consider the case $m^2 < 0$: $m^2 = -\mu^2$. In this case, V has a local maximum, rather than a minimum, at $\Phi^i = 0$. Since V is a potential energy, this implies that the ground state of the theory is not near $\Phi^i = 0$ but rather is obtained by shifting Φ^i toward the minimum of V. By rotational invariance, we can consider this shift to be in the Nth direction. Write, then,

$$\Phi^i(x) = \pi^i(x), \quad i = 1, \ldots, N - 1,$$

$$\Phi^N(x) = v + \sigma(x),$$

where v is a constant chosen to minimize V. (The notation π^i suggests a pion field and should not be confused with a canonical momentum.) Show that, in these new coordinates (and substituting for v its expression in terms of λ and μ), we have a theory of a massive v field and $N - 1$ massless pion fields, interacting through cubic and quartic potential energy terms which all become small as $\lambda \rightarrow 0$. Construct the Feynman rules by assigning values to the propagators and vertices:

$$\begin{array}{c}
 \sigma^+ \sigma^- = \\
 \pi^i \pi^j = i \rightarrow j
\end{array}$$

(c) Compute the scattering amplitude for the process

$$\pi^i(p_1) \pi^j(p_2) \rightarrow \pi^k(p_3) \pi^l(p_4)$$
to leading order in λ. There are now four Feynman diagrams that contribute:

\[+ \quad + \quad + \quad + \]

Show that, at threshold ($p_i = 0$), these diagrams sum to zero. (Hint: It may be easiest to first consider the specific process $\pi^+ \pi^- \rightarrow \pi^+ \pi^-$, for which only the first and fourth diagrams are nonzero, before tackling the general case.) Show that, in the special case $N = 2$ (1 species of pion), the term of $O(p^2)$ also cancels.

(d) Add to V a symmetry-breaking term,

\[\Delta V = -a\Phi^N, \]

where a is a (small) constant. (In QCD, a term of this form is produced if the u and d quarks have the same nonvanishing mass.) Find the new value of v that minimizes V, and work out the content of the theory about that point. Show that the pion acquires a mass such that $m_p^2 \sim a$, and show that the pion scattering amplitude at threshold is now nonvanishing and also proportional to a.

4.4 Rutherford scattering. The cross section for scattering of an electron by the Coulomb field of a nucleus can be computed, to lowest order, without quantizing the electromagnetic field. Instead, treat the field as a given, classical potential $A_\mu(x)$. The interaction Hamiltonian is

\[H_I = \int d^3 x \bar{\psi} \gamma^\mu \psi A_\mu, \]

where $\psi(x)$ is the usual quantized Dirac field.

(a) Show that the T-matrix element for electron scattering off a localized classical potential is, to lowest order,

\[(p'|iT|p) = -ie\bar{u}(p')\gamma^\mu u(p) \cdot \vec{A}_\mu(p' - p), \]

where $\vec{A}_\mu(q)$ is the four-dimensional Fourier transform of $A_\mu(x)$.

(b) If $A_\mu(x)$ is time independent, its Fourier transform contains a delta function of energy. It is then natural to define

\[(p'|iT|p) = i\mathcal{M} \cdot (2\pi)^3 \delta(E_f - E_i), \]

where E_i and E_f are the initial and final energies of the particle, and to adopt a new Feynman rule for computing \mathcal{M}:

\[\includegraphics[width=0.2\textwidth]{fourier_transform.png} = -ie\gamma^\mu \vec{A}_\mu(q), \]

where $\vec{A}_\mu(q)$ is the three-dimensional Fourier transform of $A_\mu(x)$. Given this definition of \mathcal{M}, show that the cross section for scattering off a time-independent,