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Abstract 
Active nematic liquid crystals have remarkable properties that are only now starting to be 
understood. These non-equilibrium systems self-organize and generate flows in solutions. We 
study a type of solution consisting of microtubule filaments and motor proteins. Both are 
biological components. Microtubules give structure to the cell, while motor proteins facilitate 
transport of molecules along microtubules. We compose simulations and extract data to 
quantify stresses, pressure, filament distribution, and the order of two-dimensional active 
nematic liquid crystals. We identify and quantify phases and phase transitions, and seek to 
describe the physical properties of steady-state configurations. By characterizing these 
systems, we contribute to the developing field of non-equilibrium statistical mechanics, and 
provide a framework for further research in driven nematic liquid crystals.


Prospectus 
Microtubule filaments are a part of the structural, “cytoskeletal”, network of the cell and take 
part in non-equilibrium processes of the cell. Such processes include cell division, cell motility, 
and facilitating transport of molecules across the cell. Some processes involve microtubules 
being tethered together by crosslinking motor proteins. These motor proteins then walk to the 
filament’s positive end. If the bound pairs of filaments are anti-parallel (pointing in opposite 
directions), the walking motors drive microtubule sliding. When these component proteins are 
extracted and placed in a quasi-two-dimensional environment, they exhibit properties that are 
not observed in passive liquid crystals. At high concentrations of microtubules and motor 
proteins, these relatively simple interactions generate flows of solution and cause materials to 
self-organize. These novel properties motivate the development of non-equilibrium statistical 
mechanics and may lead to applications in new material technologies.

	 This research seeks to quantify properties of these kinds of two-dimensional active 
nematic liquid crystals. Such properties include shear stresses, pressure, microtubule 
distribution, and order parameters. Though comprising only a few distinct components, novel 
liquid crystal phases arise as parameters are varied. By varying motor concentration and motor 
walking speed, we will observe different structural phases. We will then characterize any such 
phases and quantify dynamic properties. The goal of our research is to learn what properties of 
these crosslinking motor proteins are necessary to induce observed phases and what 
attributes cause them. Previous computational research in the field has shown that simple 
models of microtubules and motors generate anisotropic extensile stresses and steric (rod-rod) 
interactions. The classification and characterization of these materials will provide a framework 
for future research in active nematic liquid crystals.

	 We have taken coarse-grain simulated data across a range of motor walking speeds 
and motor concentrations. Running simulations is computationally expensive, so this data 
narrows the parameter space and focuses our research. Once we collect preliminary data, we 



will develop software to analyze the aforementioned properties of the system. For example, 
stresses describe how energy is being converted into motion, while computing the pair 
distribution function helps describe the steady-state order of a nematic phase. Taken together, 
our analysis characterizes macroscopic quantities that determine physical laws describing 
distinct phases and phase changes. This research furthers the field by identifying the phases of 
certain driven microtubule-motor systems and describing macroscopic observables.
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Timeline 
• 08-01-2017: Collect data at low velocities and low concentrations of motors using updated 

code

• 09-30-2017: Write pair distribution code

• 10-03-2017: Thesis registration due (15:00)

• 10-20-2017: Finish writing correlation functions & run data through analysis code

• 10-30-2017: Identify specific interesting parameters to study further

• 11-14-2017: Make figures and organize data for Dr. Glaser’s January paper

• 11-30-2017: Finalize figures and data for January paper

• 12-20-2017:


• Have met with Dr. Glaser before winter break to go over what is left to be done for 
paper


• Adjust goals for next semester based on this semester’s progress

• 01-16-2017:


• Make sure figures and data are finalized for January paper

• Meet with Adam, Dr. Betterton, Dr. Glaser to reaffirm goals for spring semester


• 02-01-2018: Collect data for different parameters not yet studied

• 02-12-2018: 


• Outline of thesis completed

• Analyze stresses, pressure, distribution or solution

• Identify additional parameters to study based on analysis


• 02-26-2018: Draft 1 completed and submitted for feedback

• 03-12-2018: Draft 2 completed and submitted for feedback

• 03-14-2018:


• Honors defense presentation completed

• Draft 3 completed and submitted for feedback




• 03-19-2018: Final draft of thesis submitted to committee (about one week in advance of 
defense)


• 03-26-2018: Potential date of thesis defense (defense needs to be before April)

• 04-10-2018: Last day to defend & defense copy due (15:00)

• 04-13-2018: Final copy of thesis due on CU Scholar (23:59)


