Kähler-Dirac fermions on Euclidean dynamical triangulations

Judah Unmuth-Yockey, Simon Catterall, Jack Laiho
Syracuse University
Lattice Beyond the Standard Model
May 2-3 ${ }^{\text {rd }}, 2019$

Lattice Quantum Gravity

- We work with Euclidean Dynamical Triangulations (EDT) with spherical topology
- Euclidean space-time is "triangulated" with identical 4D simplices.
- We work under the asymptotic safety hypothesis \rightarrow gravity is strongly coupled in the UV
- Ref. [Laiho et al., 2017] looked into EDT with a measure term.

Prerequisites for valid model:

- Should have Hausdorff dimension $=4$
- 4D de Sitter \rightarrow spectral dimension

- Be able to take a continuum limit

Lattice Quantum Gravity

Spectral dimension

Lattice Quantum Gravity

Coupling to matter

- Coupling lattice gravity to scalar matter has been done [de Bakker and Smit, 1994, Hamber and Williams, 1994, de Bakker and Smit, 1997, Ambjørn et al., 2011]
- Coupling lattice gravity to gauge fields has also been explored [Renken et al., 1994, Bilke et al., 1998]
- Lattice fermions on curved lattice spacetimes are less understood [Jurkiewicz et al., 1988, Ambjørn and Varsted, 1991, Brower et al., 2017]
- Here we consider the most natural ${ }^{1}$ version of fermion fields to couple to lattice gravity. \rightarrow Kähler-Dirac fermions
- We considered the "quenched" approximation
\rightarrow A fluctuating background with no back-reaction from the fermions

[^0]
Why Kähler-Dirac fermions?

- Old friends \rightarrow staggered fermions in flat-space hypercubic lattices from lattice gauge theory
- No need to devise a spin-connection
- No need to invent a lattice action
- Should be $4 \times$ copies of Dirac Fermions in continuum, infinite volume, small curvature limit.

Fig. 2 [Follana et al., 2005]

Kähler-Dirac fermions in the continuum

- Simplest view is from the Laplace-de Rham operator:

$$
\nabla^{2}=(\mathrm{d}-\delta)^{2}=-(\mathrm{d} \delta+\delta \mathrm{d})
$$

with d the exterior derivative, and δ its adjoint.

- Following Dirac's intuition, the Kähler-Dirac operator is

$$
D=(\mathrm{d}-\delta)
$$

- It's anti-Hermitian
- The spin-connection (and covariant derivative for that matter) are hidden inside d and δ.

Kähler-Dirac fermions in the continuum

Consider the action of $\left(\gamma^{\mu} \partial_{\mu}+m\right)$ on ψ.

- promote ψ to a 4×4 matrix.
- the $\gamma \mathrm{s}$ form a basis for these.
- $\psi=f_{0}+f_{\mu} \gamma^{\mu}+\frac{1}{2} f_{\mu \nu} \gamma^{\mu} \gamma^{\nu}+\ldots$
- Any 4×4 matrix would work.
e.g.
- This gives four identical copies of the Dirac equation.

$$
\psi=\left(\begin{array}{llll}
\psi_{1} & 0 & 0 & 0 \\
\psi_{2} & 0 & 0 & 0 \\
\psi_{3} & 0 & 0 & 0 \\
\psi_{4} & 0 & 0 & 0
\end{array}\right)
$$

$$
0
$$

$$
\psi_{10}=\psi_{2}=f_{0} \mathbb{1}_{10}+f_{\mu} \gamma_{10}^{\mu}+\frac{1}{2} f_{\mu \nu} \gamma_{1 a}^{\mu} \gamma_{a 0}^{\nu}+\ldots
$$

Kähler-Dirac fermions in the continuum

- Kähler-Dirac fields are a combination of p-forms

$$
\begin{gathered}
\omega=f_{0}+f_{\mu} d x^{\mu}+\frac{1}{2} f_{\mu \nu} d x^{\mu} \wedge d x^{\nu}+\ldots \\
\psi=f_{0}+f_{\mu} \gamma^{\mu}+\frac{1}{2} f_{\mu \nu} \gamma^{\mu} \gamma^{\nu}+\ldots
\end{gathered}
$$

- $\gamma^{\mu} \partial_{\mu}$ acts identically on ψ as $\mathrm{d}-\delta$ on ω.
- However this operator is still valid for any curved space-time
- Unfortunately, in curve spaces:

Kähler-Dirac operator \neq Dirac operator.

- Nevertheless, when the curvature is negligible:

Kähler-Dirac operator $=$ Dirac operator ${ }^{4}$

Kähler-Dirac fermions on the lattice

Kähler-Dirac fermions on the lattice

- (co)Homology theory tells us that there is a straightforward transcription to the lattice:

$$
\mathrm{d} \mapsto \overline{\mathrm{~d}}, \quad \delta \mapsto \bar{\delta}
$$

- $\bar{\delta}$ is the simplex boundary operator
- Given a set of simplex vertices $\{0,1,2,3\}$:
$\bar{\delta}\{0,1,2,3\}=\{1,2,3\}-\{0,2,3\}+\{0,1,3\}-\{0,1,2\}$
for example.
- \bar{d} is its transpose.

$$
p \text {-forms } \mapsto p \text {-simplices }
$$

Kähler-Dirac fermions on the lattice

- With this transcription, the continuum results still hold on the lattice:

$$
\bar{\nabla}^{2}=(\overline{\mathrm{d}}-\bar{\delta})^{2}=-(\overline{\mathrm{d}} \bar{\delta}+\bar{\delta} \overline{\mathrm{d}})
$$

is the lattice Laplacian, however in all simplex sectors, not just the 4 - and 0 -simplex sectors.

- The lattice Kähler-Dirac operator

$$
\bar{D}=\overline{\mathrm{d}}-\bar{\delta}
$$

then carries all the same information as the lattice Laplace-de Rham operator.

Results

We looked at:

- the eigenvalues of the Kähler-Dirac matrix
\rightarrow restore spectrum degeneracy in $V \rightarrow \infty$, continuum limit.
- correlations
\rightarrow see meson masses tend towards degeneracy in chiral, $V \rightarrow \infty$, continuum limit.
- condensates
\rightarrow remnant chiral symmetry should be unbroken in chiral, $V \rightarrow \infty$ limit.

Eigenvalues

We can add a real mass term and consider the spectral decomposition of the Kähler-Dirac operator

$$
\bar{D}+m=\sum_{n=1}^{N}\left(i \lambda_{n}+m\right)|n\rangle\langle n|
$$

Consider a similarity transform for transposition for \bar{D}, Γ,

$$
\Gamma \bar{D} \Gamma^{-1}=\bar{D}^{T}=-\bar{D}
$$

Then the Γ anti-commutes with \bar{D} and ensures the eigenvalues come in complex conjugate pairs.

$$
\Gamma=\bigoplus_{p=0}^{4}(-1)^{p} \quad \Longrightarrow \quad e^{i \Gamma \theta} \text { is a } U(1) \text { symmetry }
$$

Eigenvalues

We looked at the finite-size scaling of the lowest eigenvalues.

$$
\left\langle\lambda_{n}\right\rangle \sim\left(\frac{1}{N_{4}}\right)^{p_{n}}
$$

- We have multiple volumes for $\beta=0$ and $\beta=1.5$ and can extract p in those cases.

Eigenvalues

- Fitting to an ansatz

$$
\left\langle\lambda_{n}\right\rangle=\frac{a_{n}}{N_{4}^{p_{n}}}+b_{n}
$$

we can extract the infinite volume value.

- For $\beta=0$ we see a hint of clustering in the first 16 eigenvalues.

Correlations

- The inverse Kähler-Dirac operator can be written cleanly as

$$
K^{-1}=(\bar{D}+m)^{-1}=\frac{K}{K^{2}}
$$

- This matrix records the correlations between simplices
- There are a few possible (legitimate) definitions of distance for the simplices.
- We used smearing over the 4-simplex for its simplicity

Correlations

- We fit to the ansatz that at long distances:

$$
G(r) \sim e^{-m r} \text { and } e^{-m r} / r^{\alpha}
$$

- we find this empirically for a wide range of probe masses.
- We find the meson propagators also have this form.

Correlations

$4 \mathrm{k}, \beta=0, m_{0}=0.05$

- There are nine types of correlations
- Diagonal blocks are given by the inverse Laplacian
- These are p to p-simplex correlators
- off-diagonal blocks correlate p - and $p \pm 1$-simplices

Pion-like correlators

- Off-diagonal correlators of Pion-like mesons.
- $\left\langle\omega_{x} \Gamma \bar{\omega}_{x} \omega_{y} \Gamma \bar{\omega}_{y}\right\rangle \rightarrow$ $\left\langle\left(\bar{\omega}_{x} \omega_{y}\right)\left(\bar{\omega}_{x} \omega_{y}\right)^{\dagger}\right\rangle$

- 「 anti-commutes with $D(\bar{D})$
- All-in-all there are nine pion-like mesons one can make directly from the p-simplex sectors.

Pion-like correlators

Condensates

We can also consider the diagonal of $(\bar{D}+m)^{-1}$. This is the bilinear condensate.

- We used Z_{2} stochastic noise to extract the diagonal [Dong and Liu, 1994]

$$
\begin{gathered}
\left\langle\eta_{i} \eta_{j}\right\rangle=\delta_{i j}, \quad\left\langle\eta_{i}\right\rangle=0 \\
(\bar{D}+m) X=\eta \Longrightarrow\langle\eta X\rangle=\left\langle\eta(\bar{D}+m)^{-1} \eta\right\rangle=(\bar{D}+m)^{-1}
\end{gathered}
$$

- We used mini-ensembles of stochastic vectors, and averaged over EDT configs.
- We considered

$$
\operatorname{Tr}\left[(\bar{D}+m)^{-1}\right]=\operatorname{Tr}[\langle\eta X\rangle] \sim \sum_{x}\left\langle\bar{\omega}_{x} \omega_{x}\right\rangle
$$

and

$$
\operatorname{Tr}\left[\langle\eta X\rangle^{2}\right] \sim \sum_{x}\left\langle\left(\bar{\omega}_{x} \omega_{x}\right)^{2}\right\rangle
$$

Condensates

- In the un-normalized case we know the small-mass scaling:

$$
\langle\bar{\omega} \omega\rangle=\frac{2}{m_{0}}+2 m_{0} \sum_{n} \frac{1}{\lambda_{n}^{2}+m_{0}^{2}}
$$

there are two zero modes which scale $\sim 1 / m_{0}$.

- With the zero-modes removed, the Γ-related symmetry is unbroken spontaneously in the chiral limit.

Condensates

for the $\beta=0$ ensembles:

Condensates

- For the four-fermion condensate, it should go $\sim 1 / m_{0}^{2}$ for small m_{0}.
- In fact, by naïve power counting, it should contribute to Z.

$$
\begin{aligned}
& \rightarrow \operatorname{det}\left[\bar{D}+m_{0}\right] \sim m_{0}^{2} \\
& \quad \Longrightarrow \operatorname{det}\left[\bar{D}+m_{0}\right](\bar{\omega} \omega)^{2} \sim 1
\end{aligned}
$$

- This condensate should contribute to the mass of the fermions, and chiral symmetry is unbroken.

Conclusions \& future work

- Kähler-Dirac fermions can be put on dynamical triangulations straightforwardly
- We expect the large-volume, small-curvature limit is similar to Dirac fermions
- As we approach the continuum limit we see degeneracy restoring (four copies of Dirac fermions)
- remnant Chiral symmetry is unbroken
- Vanishing discretization effects, and promising phenomenology lend support to asymptotically safe gravity.
- To do: Simulations with dynamical fermions

Thank you!

References I

Ambjørn, J., Barkley, J., Budd, T., and Loll, R. (2011).
Baby universes revisited.
Physics Letters B, 706(1):86-89.
國 Ambjørn, J. and Varsted, S. (1991).
Dynamical triangulated fermionic surfaces.
Physics Letters B, 257(3):305-312.
呞 Bilke, S., Burda, Z., Krzywicki, A., Petersson, B., Tabaczek, J., and Thorleifsson, G. (1998).

4d simplicial quantum gravity: matter fields and the corresponding effective action. Physics Letters B, 432(3):279-286.

References II

回 Brower，R．C．，Weinberg，E．S．，Fleming，G．T．，Gasbarro，A．D．，Raben，T．G．，and Tan， C．I．（2017）．
Lattice Dirac fermions on a simplicial Riemannian manifold．
Physical Review D，95（11）：1－25．
圁 de Bakker，B．and Smit，J．（1994）．
Euclidean gravity attracts．
Nuclear Physics B－Proceedings Supplements，34：739－ 741.
Proceedings of the International Symposium on Lattice Field Theory．
围 de Bakker，B．V．and Smit，J．（1997）．
Gravitational binding in 4d dynamical triangulation．
Nuclear Physics B，484（1）：476－492．

References III

睩 Dong，S．－J．and Liu，K．－F．（1994）．
Stochastic estimation with z2 noise．
Physics Letters B，328（1）：130－136．
Follana，E．，Hart，A．，Davies，C．T．H．，and Mason，Q．（2005）．
Low－lying Dirac spectrum of staggered quarks．
Physical Review D，72（5）：054501．
围 Hamber，H．W．and Williams，R．M．（1994）．
Simplical gravity coupled to scalar matter．
Nuclear Physics B，415（2）：463－496．
國 Jurkiewicz，J．，Krzywicki，A．，Petersson，B．，and Sderberg，B．（1988）．
Ising spins on a dynamically triangulated random surface．
Physics Letters B，213（4）：511－515．

References IV

(1) Laiho, J., Bassler, S., Coumbe, D., Du, D., and Neelakanta, J. T. (2017). Lattice quantum gravity and asymptotic safety. Phys. Rev. D, 96:064015.

Renken, R. L., Catterall, S. M., and Kogut, J. B. (1994). Three-dimensional quantum gravity coupled to gauge fields. Nuclear Physics B, 422(3):677-689.

[^0]: ${ }^{1}$ In the sense that construction is easy.

