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Content of the talk

RG flows in SU(3) with Nf fundamental flavors
Tensor tools: QC friends and competitors (RG)
Symmetry preserving truncations (YM, arxiv:1903.01918)
Quantum simulations experiments (analog): cold atoms, ions ...
Quantum computations (digital): IBM, IonQ, Rigetti, ...
Abelian Higgs model with cold atom ladders
Benchmark for real time scattering (arXiv:1901.05944, PRD in
press, with Erik Gustafson and Judah Unmuth-Yockey)
Linear sigma model for Nf ∼ 10
Conclusions
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SU(3) gauge group with Nf Dirac fundamentals

2-loop perturbative beta function: nontrivial zero for Nf > 8
Nf αc
9 5.23599

10 2.20761
11 1.2342
12 0.753982
13 0.467897
14 0.278017
15 0.1428
16 0.0416105

QED 0.0073 ' 1/137
The one-loop beta function for Nf = 12 is one third of the one for
Nf = 3. If a given change of coupling is achieved by changing the
energy scale by a factor 10 for Nf = 3, then the scale needs to be
changed by a factor 1000 for Nf = 12 to achieve the same
change. This is a hint that our lattices are too small to completely
capture the non-perturbative physics.
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Schematic RG flows (β = 6/g2), Yuzhi Liu et al. Lat13
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RG flows from UV to IR (Nf > Nfc and massless case)

1) Setting the initial conditions in the far UV
For a sufficiently high scale we can use the universal perturbative
running/dimensional transmutation. The QCD analog is αs(M2

Z ) ' 0.1.

2) The intermediate scale
Using the reference scale in 1), we then reach a physical scale (say in
TeV) where we are far from both fixed points. From a computational
point of view, things look maximally nonlinear/multidimensional in both
directions. It is challenging to capture the essential features with small
lattices and one-dimensional RG flow approximations.

3) The deep IR scale (for m = 0 and attractive IRFP (Nf > Nfc ))
As we continue, most of the irrelevant features get washed out and
ultimately, the intermediate scale does not appear anymore.
Conformal symmetry and chiral symmetry are unbroken and there is
no confinement. Unlikely to be physically interesting on its own.
However the connection to the effective theory of the massive case is
interesting.

Yannick Meurice (U. of Iowa) Computational Strategies BSM, Syracuse, May 2, 2019 5 / 63



Breaking the conformal symmetry

There are two ways to break the conformal symmetry:
1 use Nf < Nfc flavors
2 introduce a mass or several masses so that there are less than

Nfc massless fermions
This drastically affects the third regime (deep IR) of the RG flows
described before. At low energy we expect that chiral symmetry is
broken and that confinement takes place. One expect that it is possible
to build a effective theory inspired by our experience with ordinary
QCD.
In the following, I discuss strategies to

1 do computations on large lattices (using Tensor RG or cold atom
simulators)

2 build effective theories for massive theories with Nf ∼ 10
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Gapped, “confining", complex RG flows: 2D O(N)
models in the large-N limit
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Figure: Complex RG I: mgap = εeiθ (small circle around 0), ΛUV → ΛUV/b go
directly from weak coupling to strong coupling. The blending blue crosses are
the β images of two lines of points located very close above and below the
[−8,0] cut of β(M2) in the M2 plane, Fisher’s zeros stay outside of these lines
(PRD 80 054020 and PRL 104 25160). Note: we now use β ∝ 1/g2

gauge.
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More complex flows: Y. Liu, and Y. Meurice Lines of
Fisher’s zeros as separatrices for complex
renormalization group flows Phys. Rev. D 83: 09008.

Complex RG flows for various dimensions
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Computing with quantum devices (Feynman 82)?

The number of transistors on a chip
doubled almost every two years for
more than 30 years
At some point, the miniaturization
involves quantum mechanics
Capacitors are smaller but they are
still on (charged) or off (uncharged)
qubits: |Ψ〉 = α|0〉+ β|1〉 is a
superposition of the two possibilities.
Can we use quantum devices to
explore large Hilbert spaces?
Yes, if the interactions are localized
(generalization of Trotter product
formula, Lloyd 96)

Figure: Moore’s law, source:
Wikipedia

Figure: Quantum circuit for the
quantum Ising model (E.
Gustafson)
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Golden dreams
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Quantum simulators?

You can trap about 109 identical neutral atoms in an optical lattice
fitting in about 1mm3

Figure: Left: Johannes Zeiher, a recent graduate from Immanuel Bloch’s
group can design ladder shaped optical lattices with nearest neighbor
interactions. Right: an optical lattice experiment of Bloch’s group.
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QIS and QC: what do we want to do?

Problems where perturbation theory and classical sampling fail:
Real-time evolution for QCD
Jet Physics (crucial for the LHC program)
Finite density QCD (sign problem)
Near conformal systems require very large lattices
Early cosmology
Strong gravity
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Strategy: many intermediate steps towards big goals

High expectations for QC: new materials, fast optimization,
security, ...
Risk management: theoretical physics is a multifaceted landscape
Lattice gauge theory lesson: big goals can be achieved with small
steps
Example of a big goal: ab-initio jet physics
Examples of small steps: real-time evolution in 1+1 Ising model,
1+1 Abelian Higgs model, Schwinger model, 2+1 U(1) gauge
theory ,....
Many possible paths: quantum simulations (trapped ions, cold
atoms,...), quantum computations (IBM, Rigetti,...)
Small systems are interesting: use Finite Size Scaling (data
collapse, Luscher’s formula,....)
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Discretization for classically intractable problems

QC requires a complete discretization of QFT
Discretization of space: lattice gauge theory formulation
Discretization of field integration: tensor methods for compact
fields (as in Wilson lattice gauge theory and nonlinear sigma
models, the option followed here)
Quantum computing (QC) methods for scattering in φ4

(non-compact) theories are discussed by JLP (Jordan Lee
Preskill)
JLP argue that QC is necessary because of the asymptotic nature
of perturbation theory (PT) in λ for φ4 and propose to introduce a
field cut (but this makes PT convergent! YM PRL 88 (2002))
Non compact fields methods (λφ4) see: Macridin, Spentzouris,
Amundson, Harnik, PRA 98 042312 (2018) and Klco and Savage
arXiv:1808.10378 ...
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Tensor Renormalization Group (TRG)

TRG: first implementation of Wilson program for lattice models
with controllable approximations; no sign problems; truncation
methods need to be optimized
Models we considered: Ising model, O(2), O(3), principal chiral
models, gauge models (Ising, U(1) and SU(2)))
Used for quantum simulators, measurements of entanglement
entropy, central charge, Polyakov’s loop ...
Our group: PRB 87 064422 (2013), PRD 88 056005 (2013), PRD
89 016008 (2014), PRA90 063603 (2014), PRD 92 076003
(2015), PRE 93 012138 (2016) , PRA 96 023603 (2017), PRD 96
034514 (2017), PRL 121 223201 (2018), PRD 98 094511 (2018)
Basic references for tensor methods for Lagrangian models: Levin
and Nave, PRL 99 120601 (2007), Z.C. Gu et al. PRB 79 085118
(2009), Z. Y. Xie et al., PRB 86 045139 (2012)
Schwinger model/fermions/CP(N): Yuya Shimizu, Yoshinobu
Kuramashi; Ryo Sakai, Shinji Takeda; Hikaru Kawauchi.
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Important ideas of the tensor reformulation

In most lattice simulations, the variables of integration are
compact and character expansions (such as Fourier series) can
be used to rewrite the partition function and average observables
as discrete sums of contracted tensors.

Example: the O(2) model eβ cos(θi−θj ) =
+∞∑

nij =−∞
einij (θi−θj )Inij (β)

This reformulations have been used for RG blocking but they are
also suitable for quantum computations/simulations when
combined with truncations.
Important features:

Truncations do not break global symmetries
Standard boundary conditions can be implemented
Matrix Product State ansatzs are exact
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TRG blocking: simple and exact!

Character expansion for each link (Ising example):

exp(βσ1σ2) = cosh(β)(1 +
√

tanh(β)σ1
√

tanh(β)σ2) =

cosh(β)
∑

n12=0,1

(
√

tanh(β)σ1
√

tanh(β)σ2)n12 .

Regroup the four terms involving a given spin σi and sum over its two
values ±1. The results can be expressed in terms of a tensor: T (i)

xx ′yy ′

which can be visualized as a cross attached to the site i with the four
legs covering half of the four links attached to i . The horizontal indices
x , x ′ and vertical indices y , y ′ take the values 0 and 1 as the index n12.

T (i)
xx ′yy ′ = fx fx ′ fy fy ′δ

(
mod[x + x ′ + y + y ′,2]

)
,

where f0 = 1 and f1 =
√

tanh(β). The delta symbol is 1 if
x + x ′ + y + y ′ is zero modulo 2 and zero otherwise.
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TRG blocking (graphically)

Exact form of the partition function: Z = (cosh(β))2V Tr
∏

i T (i)
xx ′yy ′ .

Tr mean contractions (sums over 0 and 1) over the links.
Reproduces the closed paths (“worms") of the HT expansion.
TRG blocking separates the degrees of freedom inside the block which
are integrated over, from those kept to communicate with the
neighboring blocks. Graphically :

xU

xD

yL yR

x1

x2

x1'

x2'

y1 y2

y1' y2'

X X'

Y

Y'
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TRG Blocking (formulas)

Blocking defines a new rank-4 tensor T ′XX ′YY ′ where each index now
takes four values.

T ′X(x1,x2)X ′(x ′
1,x

′
2)Y (y1,y2)Y ′(y ′

1,y
′
2) =∑

xU ,xD ,xR ,xL

Tx1xUy1yLTxUx ′
1y2yR

TxDx ′
2yRy ′

2
Tx2xDyLy ′

1
,

where X (x2, x2) is a notation for the product states e. g. ,
X (0,0) = 1, X (1,1) = 2, X (1,0) = 3, X (0,1) = 4. The partition
function can be written exactly as

Z = (cosh(β))2V Tr
∏
2i

T ′(2i)
XX ′YY ′ ,

where 2i denotes the sites of the coarser lattice with twice the lattice
spacing of the original lattice. Using a truncation in the number of
“states" carried by the indices, we can write a fixed point equation.
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TRG is a competitor for QC: CPU time ∝ log(V ) with
no sign problems (both sides will benefit!)
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Comparing with Onsager-Kaufman (with Haiyuan Zou,
Yuzhi Liu and Alan Denbleyker et al., PRD 89)
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Figure: Zeros of Real (�) and Imaginary (�) part of the partition function of
the Ising model at volume 8× 8 from the HOTRG calculation with Ds = 40 are
on the exact lines. Gray lines: MC reweighting solution. Thick Black curve:
the "radius of confidence" for MC reweighting result, above this line, the error
is large.
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FAQ: Do truncation break global or local symmetries?
No (Y.M. arXiv 1903.01918)

Truncations of the tensorial sums are necessary, but do they break
the symmetries of the model?
In arXiv 1903.01918, we consider the tensor formulation of the
non-linear O(2) sigma model and its gauged version (the compact
Abelian Higgs model), on a D-dimensional cubic lattice, and show
that tensorial truncations are compatible with the general identities
derived from the symmetries of these models (selection rule ...).
This selection rule is due to the quantum number selection rules
at the sites and is independent of the particular values taken by
the tensors. So if we set some of the tensor elements to zero as
we do in a truncation, this does not affect the selection rule.
The universal properties of these models can be reproduced with
highly simplified formulations desirable for implementations with
quantum computers or for quantum simulations experiments.
Truncations are compatible with universality.
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The O(2) model (Ising model with spin on a circle)

Integration measure:
∫
DΦ =

∏
x
∫ π
−π

dϕx
2π

Action: S[Φ] = −β
∑
x ,i

cos(ϕx+î − ϕx ) are invariant under

ϕ′x = ϕx + α

This implies that for a function f of N variables

〈f (ϕx1 , . . . , ϕxN )〉 = 〈f (ϕx1 + α, . . . , ϕxN + α)〉

Since f is 2π-periodic and can be expressed in terms Fourier modes

〈e(i(n1ϕx1 +...nNϕxN ))〉 = e((n1+...nN )α)〈e(i(n1ϕx1 +...nNϕxN ))〉

This implies that if
∑N

n=1 ni 6= 0, then 〈e(i(n1ϕx1 +···+nNϕxN ))〉 = 0.
In arXiv 1903.01918, we show that this selection rule follows from local
conservation laws encoded in the tensors.
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Algebraic aspects (in one dimension)

In the Hamiltonian formalism, we introduce the angular momentum
eigenstates which are also energy eigenstates

L̂|n〉 = n|n〉, Ĥ|n〉 =
n2

2
|n〉

We assume that n can take any integer value from −∞ to +∞. As
Ĥ = (1/2)L̂2, it is obvious that [L̂, Ĥ] = 0.

The insertion of eiϕx in the path integral, translates into as operator êiϕ

which raises the charge êiϕ|n〉 = |n + 1〉, while its Hermitean conjugate
lowers it (êiϕ)†|n〉 = |n − 1〉.
This implies the commutation relations

[L, êiϕ] = êiϕ, [L, êiϕ
†
] = −êiϕ

†
, [êiϕ, êiϕ

†
] = 0.
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Truncation effects on algebra

By truncation we mean that there exists some nmax for which

êiϕ|nmax〉 = 0, and (êiϕ)†| − nmax〉 = 0.

The only changes the commutation relations are

〈nmax |[êiϕ, êiϕ
†
]|nmax〉 = 1, (1)

〈−nmax |[êiϕ, êiϕ
†
]| − nmax〉 = −1,

instead of 0. The truncation only affects matrix elements involving the
êiϕ operators but does not contradict that: If

∑N
n=1 ni 6= 0,

then 〈0|(êiϕ)n1 . . . (êiϕ)nN |0〉 = 0 (with (êiϕ)−n ≡ (êiϕ
†
)n for n > 0))

Note: similar questions appear in quantum links formulations (see R.
Brower, The QCD Abacus, hep-lat/9711027)
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TRG Formulation of 3D Z2 Gauge Theory

Z =
∑
{σ}

exp

(
β
∑

P

σ12σ23σ34σ41

)
,

For each plaquette the weight is∑
n=0,1

( 4
√

tanh(β)σ12
4
√

tanh(β)σ23
4
√

tanh(β)σ34
4
√

tanh(β)σ41)n.

Regrouping the factors with a given σl and summing over ±1 we obtain
a tensor attached to this link

A(l)
n1n2n3n4

=
(

4
√

tanhβ
)n1+n2+n3+n4

×

δ (mod[n1 + n2 + n3 + n4,2]) .
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A and B tensors

The four links attached to a given plaquette p must carry the same
index 0 or 1. For this purpose we introduce a new tensor

B(p)
m1m2m3m4

= δ(m1,m2,m3,m4)

=

{
1, all mi are the same
0, otherwise.

The partition function can now be written as

Z = (2 coshβ)3V Tr
∏

l

A(l)
n1n2n3n4

∏
p

B(p)
m1m2m3m4

,

Note: one can move the tanh(β) from links to plaquettes
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A and B tensors graphically

A

B

n1

n2

n3

n4

m1

m2

m3

m4
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The Schwinger model (in progress with N. Butt, S.
Catterall and J. Unmuth-Yockey)

No sign issue (to be confirmed)
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Schwinger model with trapped ions

Figure: From Guido Pagano talk at Fermilab.

Figure: From Guido Pagano talk at Fermilab.
Yannick Meurice (U. of Iowa) Computational Strategies BSM, Syracuse, May 2, 2019 30 / 63



Dynamical gauge fields with cold atoms and
molecules at UIUC
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The Abelian Higgs model on a 1+1 space-time lattice

a.k.a. lattice scalar electrodynamics. Field content:
• Complex (charged) scalar field φx = |φx |eiθx on space-time sites x
• Abelian gauge fields Ux ,µ = exp iAµ(x) on the links from x to x + µ̂
• Fµν appears when taking products of U ’s around an elementary
square (plaquette) in the µν plane
• Notation for the plaquette: Ux ,µν = ei(A(x)µ+A(x+µ̂)ν−A(x+ν̂)µ−A(x)ν)

• βpl. = 1/e2 and κ is the hopping coefficient

S = −βpl.
∑

x

∑
ν<µ

ReTr [Ux ,µν ] + λ
∑

x

(
φ†xφx − 1

)2
+
∑

x

φ†xφx

− κ
∑

x

d∑
ν=1

[
eµch.δ(ν,t)φ†xUx ,νφx+ν̂ + e−µch.δ(ν,t)φ†x+ν̂U†x ,νφx

]
.

Z =

∫
Dφ†DφDUe−S

Unlike other approaches (Reznik, Zohar, Cirac, Lewenstein, Kuno,....)
we will not try to implement the gauge field on the optical lattice.
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Gauge-invariant tensor form: Z = Tr [
∏

T ]

(see PRD.88.056005 and PRD.92.076003)

Z =∝ Tr

∏
h,v ,�

A(s)
mupmdown

A(τ)
mright mleft

B(�)
m1m2m3m4

 .
The traces are performed by contracting the indices as shown
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Polyakov loop: definition

Polyakov loop, a Wilson line wrapping around the Euclidean time
direction: 〈Pi〉 = 〈

∏
j U(i,j),τ 〉 =exp(−F (single charge)/kT ); the order

parameter for deconfinement.

With periodic boundary condition, the insertion of the Polyakov loop
(red) forces the presence of a scalar current (green) in the opposite
direction (left) or another Polyakov loop (right).

0 01

0 01

0 01

0 01

0 01

1

1

1

1

1

0

0

0

0

0

0 0 01 1

0 0 01 1

0 0 01 1

0 0 01 1

0 0 01 1

In the Hamiltonian formulation, we add − Ỹ
2 (2(L̄z

i? − L̄z
(i?+1))− 1) to H.
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Universal functions (FSS): the Polyakov loop

arXiv:1803.11166 (Phys. Rev. Lett. 121, 223201) and
arXiv:1807.09186 (Phys. Rev. D 98, 094511)

0 20 40 60 80 100
N2

s U

0.5

1.5

2.5
N

s
E

PL+00BC

X = 2
X = 3
X = 4

= 2
= 3
= 4

Figure: Data collapse of Ns∆E defined from the insertion of the Polyakov
loop, as a function of N2

s U, or (Nsg)2 (collapse of 24 datasets). Numerical
work by Judah Unmuth-Yockey and Jin Zhang.
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Optical lattice implementation with a ladder

After taking the time continuum limit:

H̄ =
Ũg

2

∑
i

(
L̄z

(i)

)2
+

Ỹ
2

∑
i

(L̄z
(i) − L̄z

(i+1))2 − X̃
∑

i

L̄x
(i)

Figure: Ladder with one atom per rung: tunneling along the vertical direction,
no tunneling in the the horizontal direction but short range attractive
interactions. A parabolic potential is applied in the spin (vertical) direction.

Yannick Meurice (U. of Iowa) Computational Strategies BSM, Syracuse, May 2, 2019 36 / 63



Concrete Proposal

J

j

i

al

ar

Rc

V

S
p

in
La

tt
ic

e

Figure: Multi-leg ladder implementation for spin-2. The upper part shows the
possible mz-projections. Below, we show the corresponding realization in a
ladder within an optical lattice. The atoms (green disks) are allowed to hop
within a rung with a strength J, while no hopping is allowed along the legs.
The lattice constants along rung and legs are ar and al respectively. Coupling
between atoms in different rungs is implemented via an isotropic
Rydberg-dressed interaction V with a cutoff distance Rc (marked by blue
shading).
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From tensors to circuits
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Time evolution with QC: IBM and Rigetti

Figure: Schwinger model and quantum Ising model
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Quantum circuit for the quantum Ising model

Quantum circuit with 3 Trotter steps ( arXiv:1901.05944 E. Gustafson,
YM and J. Unmuth-Yockey)

Figure: Quantum circuit corresponding to the Trotter steps (in the σx basis).
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Figure: Evolution of two-particle initial states with OBC (Left) and PBC
(Right). Simulations with QISKIT and numpy for current trapped ions or near
future superconducting qubits (arXiv:1901.05944).
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Syst. and stat. errors (1901.05944, PRD in press, see
Erik Gustafson’s talk)
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Effective description with a linear sigma model?

In lattice QCD, chiral perturbation theory provides useful
parametrizations of the dependence on the mass, volume and
lattice spacing; the σ is considered heavy compared to the light
Goldstone bosons (pions).
Recent lattice calculations indicate that as one adds more light
flavors, it seems that the σ is lighter and cannot be integrated
(need of linear theory?): Y. Aoki et al. (LatKMI), Phys. Rev. D89;T.
Appelquist et al. (Lattice Strong Dynamics), Phys. Rev. D 93; Y.
Aoki et al. (LatKMI), Phys. Rev. D96; A. D. Gasbarro and G. T.
Fleming, PoS LATTICE2016, Z. Fodor et al. PoS LATTICE2014;
E. Rinaldi et al. LatKMI, Lattice 2017; J. Kuti’s talk.
The axial anomaly seems to be a significant effect for the linear
sigma model: J. Schechter and Y. Ueda, Phys. Rev. D 3, 2874
(1971); C. Rosenzweig, J. Schechter, and C. G. Trahern, Phys.
Rev. D 21, 3388 (1980); G. ’ t Hooft, Phys. Rept. 142, 357 (1986);
Y. Meurice, Mod. Phys. Lett. A2, 699 (1987); A. H. Fariborz, R.
Jora, and J. Schechter, Phys. Rev. D 77, 094004 (2008).
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Nf = 2 and 3

For Nf =2, a term used to describe the axial anomaly ((detφ+ detφ†))
provides a mass term with alternate signs:

Va|Nf =2 ∝ (η′2 − σ2 + a2
0 − π2).

The Nf = 2 model was used by ’t Hooft to explain the role that the
instantons play in the spectrum because if we replace the effective
bosonic degrees of freedom by their quark content (a0 ∼ ψ̄τψ etc ..),
we recognize a term of the ’t Hooft determinant appearing in his
instanton calculation.

For 3 flavors with equal masses and an anomaly term χ(detφ+ detφ†)
gives a mass spectrum (Y.M. MPLA 2 699, 1987)
M2
η′ −M2

π = (3/2)χfπ
M2
σ −M2

π = (3/2)λ1f 2
π − (1/2)χfπ

M2
a −M2

π = λ2f 2
π + χfπ
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Linear σ model with Nf flavors (Y. M. PRD 96, 114507)

Approximate effective theory for a SU(3) local gauge theory with
Nf Dirac fermions (hyperquarks) in the fundamental representation
and with equal masses (2 masses: D. Floor and E. Gustafson).
The low energy fields are 2N2

f bosons (σ, a0, η′ and π)
The Lagrangian has three parts:

a renormalizable U(Nf )L
⊗

U(Nf )R invariant part
a SU(Nf )V invariant mass term
a term representing the effects of the axial anomaly.

We calculated the tree-level spectrum for arbitrary Nf

Using lattice results (LatKMI), we found combinations of the
meson masses that vary slowly with the hyperquark mass and Nf

The anomaly term plays a leading role in the mass spectrum
M2
σ ' (2/Nf − Cσ)M2

η′ in the chiral limit
Lattice measurements of M2

η′ and the approximate constants Cσ

could help locating the boundary of the conformal window where
M2
σ = 0 for Nfc ' 2/Cσ.
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The meson fields φij

φ: Nf × Nf matrix of effective fields φij transforming like ψ̄RjψLi with
the summation over the color indices implicit.
Under a general transformation of U(Nf )L

⊗
U(Nf )R,

φ→ ULφU†R .

We use a basis of Nf × Nf Hermitian matrices Γα such that

Tr(ΓαΓβ) = (1/2)δαβ,

to express φ in terms of N2
f scalars (0+ in JP notation), denoted

Sα, and N2
f pseudoscalars (0−), denoted Pα:

φ = (Sα + iPα)Γα,

with a summation over α = 0,1, . . .N2
f − 1. We use the convention

that Γ0 = 1/
√

2Nf while the remaining N2
f − 1 matrices are

traceless.
References: J. Schechter et al., PRD 3 2874; ’t Hooft, Phys. Rep.
142 357;Y. M., MPL A2 699 and refs. therein
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The effective Lagrangian and its symmetries

The diagonal subgroup U(Nf )V defined by the elements of
U(Nf )L

⊗
U(Nf )R such that UL = UR.

under U(Nf )V , S0 and P0 are singlets denoted σ and η′

respectively while the remaining components transform like the
adjoint representation and are denoted a0 and π respectively.
Effective Lagrangian: canonical kinetic term and 3 potential terms

L = Tr∂µφ∂µφ† − V0 − Va − Vm,

V0 is the most general U(Nf )L
⊗

U(Nf )R invariant renormalizable
expression:

V0 ≡ −µ2Tr(φ†φ) + (1/2)(λσ − λa0)(Tr(φ†φ))2

+(Nf/2)λa0Tr((φ†φ)2).

The use of λσ − λa0 will become clear when we write the mass
formulas.
The first two terms of V0 and the kinetic term have a larger
symmetry group O(2N2

f ).
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Mass and Axial anomaly terms

Mass term which is the same for the Nf flavors:

Vm ≡ −(b/
√

2Nf )(Trφ+ Trφ†) = −bσ.

It is invariant under SU(Nf )V .
Anomaly term (for hyperquarks in the fundamental
representation):

Va ≡ −2(2Nf )Nf /2−2X (detφ+ detφ†),

is invariant under SU(Nf )L
⊗

SU(Nf )R but breaks the axial U(1)A.
The prefactor 2(2Nf )Nf /2−2 is chosen in order to make the
expression of the spectrum as simple as possible. The parameter
X has a mass dimension 4− Nf .
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Chiral symmetry breaking

We assume that chiral symmetry is spontaneously broken by a
SU(Nf )-invariant vacuum expectation value (v.e.v.):〈

φij
〉

= vδij/
√

2Nf .

This amounts to say that 〈σ〉 = v while the other v.e.v.s are zero. We
impose that

∂V/∂φ|〈φ〉 = 0.

Thanks to the simple form of the v.e.v.s, these N2
f equations reduce to

a single one:

− µ2v + (1/2)λσv3 − (X/Nf )vNf−1 = b.

In the chiral limit, this description breaks down as we go across the
boundary of the conformal windows (other degrees of freedom).
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Pions

For the pions, we have:

M2
π = −µ2 + (1/2)λσv2 − (X/Nf )vNf−2.

Note: when X = 0, (1/2)λσv2 > M2
π

Using the minimization condition

−µ2v + (1/2)λσv3 − (X/Nf )vNf−1 = b,

this can be recast in the form

M2
πv = b.

When b = 0, M2
πv = 0 and v 6= 0 implies that in this chiral limit, the

pions are exactly massless Nambu Goldstone bosons.
The v.e.v. v is related to the pion decay constant in the following way:

fπ =
√

2/Nf v .

Yannick Meurice (U. of Iowa) Computational Strategies BSM, Syracuse, May 2, 2019 51 / 63



The spectrum

The other results for the spectrum can be written in a compact way:

M2
η′ −M2

π = XvNf−2

M2
σ −M2

π = λσv2 − (1− 2/Nf )XvNf−2

M2
a0 −M2

π = λa0v2 + (2/Nf )XvNf−2.

In the chiral limit (b = 0), this reduces to

M2
σ = λσv2 − (1− 2/Nf )M2

η′

M2
a0 = λa0v2 + (2/Nf )M2

η′ .

Note: when X = 0 , (1/2)λσv2 > M2
π and M2

σ > 3M2
π
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Dimensionless ratios

In order to allow comparisons of numerical results at different lattice
spacings, we introduce the dimensionless ratios:

Rσ ≡ λσv2/M2
η′ ,

and
Ra0 ≡ λa0v2/M2

η′ .

We want to test the idea that these quantities vary slowly with the
explicit breaking of chiral symmetry (due to the mass of the fermions
mf ) and Nf . If it is the case, the mass formulas have simple
approximate forms which could provide a nice intuitive picture. To
make things completely clear, the ratios should be understood as
functions of the spectroscopic data, namely

Rσ = (M2
σ −M2

π)/M2
η′ + (1− 2/Nf )(1−M2

π/M
2
η′)

Ra0 = (M2
a0
−M2

π)/M2
η′ − (2/Nf )(1−M2

π/M
2
η′).
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Dimensionless ratios vs. Mπ/Meta′ with LatKMI data

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Mπ /Mη′

0.4

0.2

0.0

0.2

0.4

0.6

0.8

R
RσN=12

RaO
N=12

RσN=8

RaO
N=8

Figure: Rσ for Nf =8 (diamonds) and 12 (upside-down triangles) and Ra0 for
Nf =8 (squares) and 12 (triangles), versus Mπ/Mη′ .
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Figure: Rσ for Nf =8 (squares) and 12 (circles) versus (Mπ/Mη′)
2.
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Figure: Ra0 for Nf =8 (squares) and 12 (circles) versus (Mπ/Mη′)
2.
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Stability of the potential with negative λa0

The figures show that for small mf , we have negative values of Ra0 .
Can λa0 be negative? The stability of the effective potential requires
that V0 stays positive for large values of the field φ. Using the
symmetry U(Nf )L

⊗
U(Nf )R of V0, we can diagonalize φ. φ†φ is then a

diagonal matrix with positive diagonal terms |αi |2 and the sum of the
two quartic terms of V0 will remain positive when λa0 = −|λa0| is
negative provided that

(1/2)(λσ + |λa0|)(

Nf∑
i=1

|αi |2)2 ≥ (Nf/2)|λa0|
Nf∑

i=1

|αi |4.

This inequality should remain valid for any choice of αi . Considering
the case where only one |αi | becomes arbitrarily large, we get the
requirement

λσ ≥ (Nf − 1)|λa0|

which is sufficient to insure that the inequality is satisfied in general.
Yannick Meurice (U. of Iowa) Computational Strategies BSM, Syracuse, May 2, 2019 57 / 63



Two masses, D. Floor, E. Gustafson and Y. M., Phys.
Rev. D 98, 094509 (2018).

Mass term with N1 flavors of mass m1 and N2 flavors of mass m2,

Vm ≡ −(TrMφ+ h.c.) = −b0S0 − b8S8

. The matrixM can be written as b0Γ0 + b8Γ8 and Vm is invariant
under SU(N1)V

⊗
SU(N2)V . We assume that this vector symmetry is

not broken spontaneously and that the vacuum expectation of φ has
the form:

〈φ〉 =
1√
2Nf

.

(
v11N1×N1 0

0 v21N2×N2 .

)
(2)

This means that 〈S0〉 = v0 and 〈S8〉 = v8 or equivalently

〈φ〉 = v0Γ0 + v8Γ8.

The transformation between the two expressions is

v1 = v0 +
√

N2/N1v8 (3)
v2 = v0 −

√
N1/N2v8, (4)
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Mass inversion in the a0 sector

∆σ ≡ M2
σ −M2

π

∆a0 ≡ M2
a0 −M2

π

∆η′ ≡ M2
η′ −M2

π ,

M2
πhh
−M2

πll
' (v2 − v1)

v
∆a0.

M2
πlh
−M2

πll
' 1

2
(M2

πhh
−M2

πll
)

M2
a0hh
−M2

a0ll
' (v2 − v1)

v
(3∆a0 −

8
Nf

∆η′)

M2
a0lh
−M2

a0ll
' 1

2
(M2

a0hh
−M2

a0ll
)

Expected splittings for M2
π : we need to have v2 > v1 because ∆a0 > 0,

but then M2
a0hh

< M2
a0hl

< M2
a0ll

because
3∆a0−(8/Nf )∆η′

M2
η′

< 0 for all the

LatKMI datasets
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Nf (amf )
∆a0
M2
η′

3∆a0−(8/Nf )∆η′

M2
η′

8 0.012 0.0584(74) -0.669(71)
8 0.015 0.0644(78) -0.724(81)
8 0.02 0.0885(95) -0.640(70)
8 0.03 0.160(41) -0.38(16)
8 0.04 0.214(28) -0.22(11)

12 0.04 0.0854(94) -0.225(52)
12 0.05 0.1079(65) -0.163(51)
12 0.06 0.1124(73) -0.261(65)

Table: Values ∆a0
M2

η′
and 3∆a0−(8/Nf )∆η′

M2
η′

using the LatKMI data .

The reasons for the inversion are clear if you look at detailed formulas.
Not seen for mass splitting used in R. C. Brower, A. Hasenfratz, C.
Rebbi, E. Weinberg, and O. Witzel, Phys. Rev. D 93, 075028 (2016).
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Radiative corrections (With J. Bijnens, in progress)

The reasons for the inversion are clear. Assuming v2 > v1 to get the
standard ordering for the pseudoscalars, we see that λa0 < 0 makes
λa0v2

2 more negative for M2
a0hh

. In addition, the anomaly term for M2
a0hh

has larger powers of v1 and lower powers of v2 than M2
a0ll

and the
coupling is positive so again it inverts the ordering. Can radiative
corrections modify this picture?

λσσσσv2 = −(1/8Nf )(∆σ) + (1/3− Nf/4 + N2
f /24)∆η′

3 pages . . .

δM2
σ = 12λσσσσ(M2

σ/16π2)(1− log(M2
σ/µ

2)) + . . .

Not clear that perturbation theory makes sense for lattice data
Tree level formula may not be reliable
Vacuum stability issues
Work in progress
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Conclusions

Tensor Field Theory is a generic tool to discretize path integral
formulations of lattice model with compact variables
TRG: exact blocking, a friendly competitor to QC; we have all the
basic blocks for QCD; sampling is also possible (Gattringer ...)
Truncations respect symmetries
TRG: gauge-invariant approach for the quantum simulation of
gauge models.
Finite size scaling: small systems are interesting
Need for dedicated quantum simulations and computations
facilities
A better understanding of conformal (or near conformal) lattice
gauge models is necessary before attempting model building
The anomaly term plays a leading role in the mass spectrum
Tree level effective linear models may not be reliable
Thanks!
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