# A qubit model for U(1) lattice gauge theory

R. Lewis and R.M. Woloshyn

Quantum computers offer advantages such as:

- quantum parallelism,
- access to real-time dynamics.

We are using classical simulators to explore an implementation of U(1) gauge fields.

#### outline

- from action to Hamiltonian
- electric field eigenstates
- energy eigenvalues
- the Hamiltonian expressed in Pauli operators
- real-time propagation
- real-time collisions 🛧 🛃

#### from action to Hamiltonian

review:Kogut,Rev.Mod.Phys.51,659(1979)

The Euclidean lattice action is a sum over all plaquettes,

$$S = -\frac{\beta}{2} \sum_{P} \left( U_P + U_P^* \right)$$

where  $\beta = 1/g^2$  and  $U_P = e^{i\theta_\mu(n)}e^{i\theta_\nu(n+\hat{\mu})}e^{-i\theta_\mu(n+\hat{\nu})}e^{-i\theta_\nu(n)}$ .

To convert this into a Hamiltonian, let  $\theta_{\mu}(n) = agA_{\mu}(n)$ . Choosing the temporal gauge ( $\theta_t(n) = 0$ ), and sliding the temporal lattice spacing to zero brings us to the Hamiltonian for compact U(1) gauge theory:

$$H = \sum_{n} \left( \frac{a^3}{2} \vec{E}^2(n) - \frac{\beta}{a} \sum_{i=2}^{3} \sum_{j=1}^{i-1} \cos\left(\theta_i(n) + \theta_j(n+\hat{i}) - \theta_i(n+\hat{j}) - \theta_j(n)\right) \right)$$

where  $\vec{E} = \partial_t \vec{A}$  is the electric field.

#### electric field eigenstates

review:Kogut,Rev.Mod.Phys.51,659(1979)

The conjugate momentum for  $\vec{\theta}$  (name it  $\vec{L}$ ) is proportional to  $\vec{E}$ . Angles constrained to  $[0, 2\pi)$  produce quantized conjugate momentum eigenvalues:

$$\ell_i(n) = \dots, -2, -1, 0, 1, 2, \dots$$

An immediate consequence is that link variables  $(U_j = e^{i\theta_j})$  are ladder operators because

$$[U_j,L_j]=-U_j$$
 and  $[U_j^\dagger,L_j]=U_j^\dagger$ 

The Hamiltonian can now be written as

$$H = \frac{1}{2a\beta} \left( \sum_{j} L_{j}^{2} - \beta^{2} \sum_{P} (U_{P} + U_{P}^{\dagger}) \right)$$

Let's rescale energies by dropping the overall factor of  $\frac{1}{2a\beta}$  from now on.

#### the simplest example

A  $2 \times 2$  lattice with Dirichlet boundary conditions has only one plaquette so

$$H = L_1^2 + L_2^2 + L_3^2 + L_4^2 - \beta^2 (U_1 U_2 U_3^{\dagger} U_4^{\dagger} + U_1^{\dagger} U_2^{\dagger} U_3 U_4)$$

Gauss's law requires  $L_i^2$  is the same for all 4 links. Local gauge transformations allow 3 links to be rotated to the identity. This brings us to

$$H = 4L^2 - \beta^2 (L^+ + L^-)$$

where  $L^{\pm}$  are the ladder operators. Truncating to  $-4 \leq \ell \leq 4$  gives

$$H = \begin{pmatrix} 64 & -\beta^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\beta^2 & 36 & -\beta^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\beta^2 & 16 & -\beta^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\beta^2 & 4 & -\beta^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\beta^2 & 0 & -\beta^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\beta^2 & 4 & -\beta^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\beta^2 & 16 & -\beta^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\beta^2 & 36 & -\beta^2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\beta^2 & 64 \end{pmatrix}$$

### energy eigenvalues for the $2 \times 2$ lattice



## writing the Hamiltonian with Pauli operators

For a qubit-inefficient alternative, see Byrnes&Yamamoto, PRA73, 022328(2006)

To run someday on a quantum computer (and today on a classical simulator), the states can be mapped to qubits, and operators expressed as Pauli products.

2 qubits per gauge link

| $\ell$ | state        |
|--------|--------------|
| 2      | $ 00\rangle$ |
| 1      | $ 01\rangle$ |
| 0      | $ 10\rangle$ |
| -1     | $ 11\rangle$ |

$$\begin{array}{rcl} L^+ &=& \sigma_0^+ + \sigma_0^- \sigma_1^+ \\ L^- &=& \sigma_0^- + \sigma_0^+ \sigma_1^- \\ L &=& \frac{1}{2} \left( 1 + \sigma_0^z + 2\sigma_1^z \right) \end{array}$$

#### 3 qubits per gauge link

|            | $\ell$   | state                                           |
|------------|----------|-------------------------------------------------|
| -          | 4        | $ 000\rangle$                                   |
|            | 3        | $ 001\rangle$                                   |
|            | 2        | $ 010\rangle$                                   |
|            | 1        | $ 011\rangle$                                   |
|            | 0        | $ 100\rangle$                                   |
|            | -1       | $ 101\rangle$                                   |
|            | -2       | $ 110\rangle$                                   |
|            | -3       | $ 111\rangle$                                   |
| $\sigma^+$ | -<br>+ ( | $\sigma_{0}^{-}\sigma_{1}^{+} + \sigma_{0}^{-}$ |

$$L^{+} = \sigma_{0}^{+} + \sigma_{0}^{-}\sigma_{1}^{+} + \sigma_{0}^{-}\sigma_{1}^{-}\sigma_{2}^{+}$$

$$L^{-} = \sigma_{0}^{-} + \sigma_{0}^{+}\sigma_{1}^{-} + \sigma_{0}^{+}\sigma_{1}^{+}\sigma_{2}^{-}$$

$$L = \frac{1}{2} \left(1 + \sigma_{0}^{z} + 2\sigma_{1}^{z} + 4\sigma_{2}^{z}\right)$$

## time evolution

• With 3 qubits per gauge link, we have

$$H = 22 + 2\sigma_0^z + 4\sigma_1^z + 8\sigma_2^z + 4\sigma_0^z \sigma_1^z + 8\sigma_0^z \sigma_2^z + 16\sigma_1^z \sigma_2^z -\beta^2 \left(\sigma_0^x + \frac{1}{2}(\sigma_0^x \sigma_1^x + \sigma_0^y \sigma_1^y) + \frac{1}{4}(\sigma_0^x \sigma_1^x \sigma_2^x - \sigma_0^y \sigma_1^y \sigma_2^x + \sigma_0^y \sigma_1^x \sigma_2^y + \sigma_0^x \sigma_1^y \sigma_2^y)\right)$$

• Time evolution is computed by using the 2nd-order Suzuki-Trotter formula,

$$e^{-i(A+B)t} = e^{-iAt/2}e^{-iBt}e^{-iAt/2} + O(t^3)$$



## Finding the ground state

Use the variational principle. Peruzzo et al, Nature Communications 5, 4213 (2014)

Our 2-qubit Hamiltonian can be written as

 $H = 4 + 12P_{\uparrow\uparrow} - 4P_{\downarrow\uparrow} - \beta^2 (2P_{\uparrow\uparrow}^x + P_{\downarrow\uparrow}^x - P_{\uparrow\downarrow}^{xx} - P_{\downarrow\uparrow}^{xx} - P_{\uparrow\downarrow}^{yy} - P_{\downarrow\uparrow}^{yy})$  where

$$P_{i} = |\langle i|\psi\rangle|^{2}, \quad P_{i}^{x} = |\langle i|R^{y}(-\frac{\pi}{2},0)\psi\rangle|^{2}, \quad P_{i}^{xx} = |\langle i|R^{y}(-\frac{\pi}{2},0)R^{y}(-\frac{\pi}{2},1)\psi\rangle|^{2}, \\ P_{i}^{yy} = |\langle i|R^{x}(\frac{\pi}{2},0)R^{x}(\frac{\pi}{2},1)\psi\rangle|^{2}.$$

A simple trial state is  $|\psi\rangle = 0 |\uparrow\uparrow\rangle + \frac{1}{\sqrt{2}} \sin \theta |\uparrow\downarrow\rangle + \cos \theta |\downarrow\uparrow\rangle + \frac{1}{\sqrt{2}} \sin \theta |\downarrow\downarrow\rangle$ which can be built as follows:

- Begin with  $|\uparrow\uparrow\rangle$ .
- Apply X(1) to get  $|\downarrow\uparrow\rangle$ .
- Apply  $R^{y}(2\theta, 0)$  to get  $\cos \theta |\downarrow\uparrow\rangle + \sin \theta |\downarrow\downarrow\rangle$ .
- Apply  $CR^y(-\frac{\pi}{2},0,1)$  to get  $|\psi\rangle$ .



#### a row of plaquettes

Consider 7 plaquettes in a row:

The

Begin with  $L_1$  in the 1st excited state and all others in the ground state. Compute the probability to be above the ground state.



#### attractive or repulsive?

Compare a single excitation (upper plot) to colliding excitations (lower plot).



10/20

## as before, but with 3 qubits per gauge link



### as before, but with a longer lattice

Compare a single excitation (upper plot) to colliding excitations (lower plot).



12/20

## as before, but with larger $eta^2$



## as before, but with smaller $eta^2$



## an overview of the $\beta^2$ dependence

(This plot is made from simple eyeball estimates of peak locations on graphs.)



## a 2D lattice of plaquettes

Consider 9 plaquettes in a square:



Gauss's law leaves just one independent gauge link per plaquette.

The Hamiltonian is 
$$H = \sum_{i=1}^{9} \left( 4L_i^2 - \beta^2 (L_i^+ + L_i^-) \right) - 2\sum_{i=1}^{6} L_i L_{i+3} -2(L_1 L_2 + L_2 L_3 + L_4 L_5 + L_5 L_6 + L_7 L_8 + L_8 L_9)$$

### excitations begin in opposing corners



## a 3D lattice of plaquettes

Consider 3 cubes in a row:



Gauss's law leaves fewer than one independent gauge link per plaquette. This means the Hamiltonian must contain link products in both E and B terms. The B terms are more expensive (i.e. more Pauli factors).

The diagram shown here minimizes the number of link products in B terms. Other definitions of the  $L_i$  typically lead to vastly more Pauli factors in H.

### excited cubes

A single-plaquette excitation will quickly disperse on this lattice. Try exciting an entire cube. . . single excitation (upper plot), colliding excitations (lower plot)



#### summary

We have developed a qubit implementation of compact U(1) gauge theory. The Hamiltonian is written in terms of Pauli matrices.

A quantum variational eigensolver allows calculation of eigenvalues and eigenstates.

Propagation of an excitation is demonstrated for planar and  $2 \times 2 \times N$  lattices.

On a row of plaquettes, colliding excitations are observed easily. On more general lattices, colliding excitations decohere more quickly.

randy.lewis@yorku.ca