Pieces of the Puzzle:
 Reaching QCD on Quantum Computers
 Hank Lamm

Thanks to the NuQS team!

Paulo Bedaque (prof)
 Hank Lamm (postdoc) \rightarrow Fermilab
 Neill Warrington (grad) \rightarrow INT
 Scott Lawrence (grad)
 Yukari Yamauchi (grad)
 Siddhartha Harmalkar (undergrad)
 UNIVERSITY OF MARYLAND

Andrei Alexandru (prof)
THE GEORGE WASHINGTON UNIVERSITY
WASHINGTON, DC

Outline

1 Quantum Leap

2 Digitization
3 Initialization

4 Propagation

5 Evaluation

6 Conclusions

Finite-Density and Real-Time QFT have sign problems

Finite-Density and Real-Time QFT have sign problems

Finite-Density and Real-Time QFT have sign problems

- For real $t:\langle\sigma\rangle_{S_{R}}=0$

Finite-Density and Real-Time QFT have sign problems

$$
\langle\mathcal{O}\rangle=\frac{\int \mathcal{D} \phi e^{-i S_{I}} \mathcal{O} e^{-S_{R}}}{\int \mathcal{D} \phi e^{-S_{R}}} \frac{\int \mathcal{D} \phi e^{-S_{R}}}{\int \mathcal{D} \phi e^{-S_{R}} e^{-i S_{I}}}=\frac{\left\langle\mathcal{O} e^{-i S_{I}}\right\rangle_{S_{R}}}{\langle\sigma\rangle_{S_{R}}}
$$

- For real $t:\langle\sigma\rangle_{S_{R}}=0$
- For $\mu \neq 0$: Need $\propto\langle\sigma\rangle_{S_{R}}^{-2}$ configurations

If you want these...you need quantum computers

If you want these...you need quantum computers

Converting Bits to Qubits

If you want these...you need quantum computers

Converting Bits to Qubits

$$
\{|0\rangle,|1\rangle\} \rightarrow\{a|0\rangle+b|1\rangle\}
$$

If you want these...you need quantum computers

Converting Bits to Qubits

$$
\{|0\rangle,|1\rangle\} \rightarrow\{a|0\rangle+b|1\rangle\}
$$

If you want these...you need quantum computers

Converting Bits to Qubits

$$
\{|0\rangle,|1\rangle\} \rightarrow\{a|0\rangle+b|1\rangle\}
$$

Digital QC provide entangled bits and gates, not field theories.

Lots of $\$ \$$, Lots of Interest, Lots of Hype

Lots of $\$ \$$, Lots of Interest, Lots of Hype

Lots of $\$ \$$, Lots of Interest, Lots of Hype

How can we use qubits for QFT analogous to LQCD

How can we use qubits for QFT analogous to LQCD

How can we use qubits for QFT analogous to LQCD

- Digitize: How are (continuous) fields represented as a register?

How can we use qubits for QFT analogous to LQCD

- Digitize: How are (continuous) fields represented as a register?
- Initalize: How can registers be set to a field configuration?

How can we use qubits for QFT analogous to LQCD

- Digitize: How are (continuous) fields represented as a register?
- Initalize: How can registers be set to a field configuration?
- Propagate: How can gates be combined to evolve states?

How can we use qubits for QFT analogous to LQCD

- Digitize: How are (continuous) fields represented as a register?
- Initalize: How can registers be set to a field configuration?
- Propagate: How can gates be combined to evolve states?
- Evaluate: How can observables of interest be computed?

Army you have, Army you might have, Army you want

	$N_{\|q\rangle}<500$	$N_{\|q\rangle} \rightarrow \infty$
$N_{\mathcal{U}}$	NISQ	NESQ
$\lesssim 100 N_{\|q\rangle}$	Noisy, Interm.	Noisy, Enorm.
$N_{\mathcal{U}}$	FISQ	FESQ
$\rightarrow \infty$	Faithful, Interm.	Faithful, Enorm.

[1]
Nam, Y., J.-S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov, K. R. Brown, S. Allen, J. M. Amini, J. Apisdorf, et al. In: arXiv preprint arXiv:1902.10171 (2019).

Army you have, Army you might have, Army you want

	$N_{\|q\rangle}<500$	$N_{\|q\rangle} \rightarrow \infty$
$N_{\mathcal{U}}$	NISQ	NESQ
$\lesssim 100 N_{\|q\rangle}$	Noisy, Interm.	Noisy, Enorm.
$N_{\mathcal{U}}$	FISQ	FESQ
$\rightarrow \infty$	Faithful, Interm.	Faithful, Enorm.

- Currently 12 qubits with 220 gates ${ }^{[1]}$.

Army you have, Army you might have, Army you want

	$N_{\|q\rangle}<500$	$N_{\|q\rangle} \rightarrow \infty$
$N_{\mathcal{U}}$	NISQ	NESQ
$\lesssim 100 N_{\|q\rangle}$	Noisy, Interm.	Noisy, Enorm.
$N_{\mathcal{U}}$	FISQ	FESQ
$\rightarrow \infty$	Faithful, Interm.	Faithful, Enorm.

- Currently 12 qubits with 220 gates ${ }^{[1]}$.
- There are practical and theoretical questions to address in each era

Army you have, Army you might have, Army you want

	$N_{\|q\rangle}<500$	$N_{\|q\rangle} \rightarrow \infty$
$N_{\mathcal{U}}$	NISQ	NESQ
$\lesssim 100 N_{\|q\rangle}$	Noisy, Interm.	Noisy, Enorm.
$N_{\mathcal{U}}$	FISQ	FESQ
$\rightarrow \infty$	Faithful, Interm.	Faithful, Enorm.

- Currently 12 qubits with 220 gates ${ }^{[1]}$.
- There are practical and theoretical questions to address in each era
- Be wary of how optimizations for one era hamstring in others

Army you have, Army you might have, Army you want

	$N_{\|q\rangle}<500$	$N_{\|q\rangle} \rightarrow \infty$
$N_{\mathcal{U}}$	NISQ	NESQ
$\lesssim 100 N_{\|q\rangle}$	Noisy, Interm.	Noisy, Enorm.
$N_{\mathcal{U}}$	FISQ	FESQ
$\rightarrow \infty$	Faithful, Interm.	Faithful, Enorm.

- Currently 12 qubits with 220 gates ${ }^{[1]}$.
- There are practical and theoretical questions to address in each era
- Be wary of how optimizations for one era hamstring in others
- Moore's law like behavior "could" render methods irrelevant.

Can we efficently approximate elements of group?

Can we efficently approximate elements of group?

- Fermions are "trival" - Bosonic fields require thought

Can we efficently approximate elements of group?

- Fermions are "trival" - Bosonic fields require thought
- Fund. Rep. with floats (Yell at Ciaran Hughes ${ }^{[2]}$)

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

```
[2] Hackett, D. C. et al. In: (2018). arXiv: 1811.03629 [quant-ph].
```


Can we efficently approximate elements of group?

- Fermions are "trival" - Bosonic fields require thought
- Fund. Rep. with floats (Yell at Ciaran Hughes ${ }^{[2]}$)
- Dual Variables (Speak with Jesse ${ }^{[3]}$, Query Yannick ${ }^{[4]}$)

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$


```
[2] Hackett, D. C. et al. In: (2018). arXiv: 1811.03629 [quant-ph].
[3] Raychowdhury, I. and J. R. Stryker. In: (2018). arXiv: 1812.07554 [hep-lat].
[4] Meurice, Y. In: (2019). arXiv: 1903.01918 [hep-lat].
[5] Alexandru, A., P. F. Bedaque, H. Lamm, and S. Lawrence. In: (2019). arXiv: 1903.06577 [hep-lat].
```


Can we efficently approximate elements of group?

- Fermions are "trival" - Bosonic fields require thought
- Fund. Rep. with floats (Yell at Ciaran Hughes ${ }^{[2]}$)
- Dual Variables (Speak with Jesse ${ }^{[3]}$, Query Yannick ${ }^{[4]}$)
- Fuzzy spheres ${ }^{[5]}$
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$


```
[2] Hackett, D. C. et al. In: (2018). arXiv: 1811.03629 [quant-ph].
[3] Raychowdhury, I. and J. R. Stryker. In: (2018). arXiv: 1812.07554 [hep-lat].
[4] Meurice, Y. In: (2019). arXiv: 1903.01918 [hep-lat].
[5] Alexandru, A., P. F. Bedaque, H. Lamm, and S. Lawrence. In: (2019). arXiv: 1903.06577 [hep-lat].
```


Can we efficently approximate elements of group?

- Fermions are "trival" - Bosonic fields require thought
- Fund. Rep. with floats (Yell at Ciaran Hughes ${ }^{[2]}$)
- Dual Variables (Speak with Jesse ${ }^{[3]}$, Query Yannick ${ }^{[4]}$)
- Fuzzy spheres ${ }^{[5]}$
- Discrete Subgroups (Accost Me)

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

the binary icosahedral group

```
[2] Hackett, D. C. et al. In: (2018). arXiv: 1811.03629 [quant-ph].
[4] Meurice, Y. In: (2019). arXiv: 1903.01918 [hep-lat].
[5] Alexandru, A., P. F. Bedaque, H. Lamm, and S. Lawrence. In: (2019). arXiv: 1903.06577 [hep-lat].
```


Fuzzy spheres can reproduce low-lying spectrum exactly ${ }^{[6]}$

[6] Alexandru, A., P. F. Bedaque, H. Lamm, and S. Lawrence. In: (2019). arXiv: 1903.06577 [hep-lat].

Fuzzy spheres can reproduce low-lying spectrum exactly ${ }^{[6]}$

- Truncate the communting algebra of functions by a non-communting algebra

Fuzzy spheres can reproduce low-lying spectrum exactly ${ }^{[6]}$

- Truncate the communting algebra of functions by a non-communting algebra
- The $O(3)$ sigma-model is defined by the Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\sum_{r}\left[\frac{g^{2}}{2} \boldsymbol{\pi}(r)^{2}+\frac{1}{2 g^{2} \Delta x^{2}}(\mathbf{n}(r+1)-\mathbf{n}(r))^{2}\right], \tag{1}
\end{equation*}
$$

[^0]
Fuzzy spheres can reproduce low-lying spectrum exactly ${ }^{[6]}$

- Truncate the communting algebra of functions by a non-communting algebra
- The $O(3)$ sigma-model is defined by the Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\sum_{r}\left[\frac{g^{2}}{2} \boldsymbol{\pi}(r)^{2}+\frac{1}{2 g^{2} \Delta x^{2}}(\mathbf{n}(r+1)-\mathbf{n}(r))^{2}\right], \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\psi(\mathbf{n})=\psi_{0}+\psi_{i} n_{i}+\frac{1}{2} \psi_{i j} n_{i} n_{j}+\ldots \tag{2}
\end{equation*}
$$

[^1]
Fuzzy spheres can reproduce low-lying spectrum exactly ${ }^{[6]}$

- Truncate the communting algebra of functions by a non-communting algebra
- The $O(3)$ sigma-model is defined by the Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\sum_{r}\left[\frac{g^{2}}{2} \boldsymbol{\pi}(r)^{2}+\frac{1}{2 g^{2} \Delta x^{2}}(\mathbf{n}(r+1)-\mathbf{n}(r))^{2}\right], \tag{1}
\end{equation*}
$$

$$
\psi(\mathbf{n})=\psi_{0}+\psi_{i} n_{i}+\frac{1}{2} \psi_{i j} n_{i} n_{j}+\ldots .
$$

$$
\begin{equation*}
\Psi=\psi_{0} \mathbb{1}+\psi_{i} \mathbb{J}_{i}+\frac{1}{2} \psi_{i j} \mathbb{J}_{i} \mathbb{J}_{j}+\ldots \tag{3}
\end{equation*}
$$

where $\mathbb{J}_{i}, i=1,2,3$ are generators of $S U(2)$ in a given representation j

[^2]
2 qubits per site, $12 L T / \Delta t$ CNOT gates

Σ_{1080} : Largest Crystal-like Subgroup of $S U(3)^{[7]}$

$\Sigma_{1080}:$ Largest Crystal-like Subgroup of $S U(3)^{[7]}$

- $S U(3)$ link: 9 complex-valued double-precison floats $\rightarrow 9 \times 2 \times 64=1152$ bits

$\Sigma_{1080}:$ Largest Crystal-like Subgroup of $S U(3)^{[7]}$

- $S U(3)$ link: 9 complex-valued double-precison floats $\rightarrow 9 \times 2 \times 64=1152$ bits
- Σ_{1080} might require 11 qubits per link.

$\Sigma_{1080}:$ Largest Crystal-like Subgroup of $S U(3)^{[7]}$

- $S U(3)$ link: 9 complex-valued double-precison floats
$\rightarrow 9 \times 2 \times 64=1152$ bits
- Σ_{1080} might require 11 qubits per link.
- For one $S U(3)$ gauge link, we could do a $\approx 5^{3}$ lattice of Σ_{1080}

$\Sigma_{1080}:$ Largest Crystal-like Subgroup of $S U(3)^{[7]}$

- $S U(3)$ link: 9 complex-valued double-precison floats $\rightarrow 9 \times 2 \times 64=1152$ bits
- Σ_{1080} might require 11 qubits per link.
- For one $S U(3)$ gauge link, we could do a $\approx 5^{3}$ lattice of Σ_{1080}
- But Wilson Action freezes at $\beta_{c} \approx 3.94(2)$ on 2^{4} !

Blast from the past ${ }^{[8]}$

[8] Bhanot, G. In: Phys. Lett. 108B (1982).

Blast from the past ${ }^{[8]}$

- Why chose the Wilson Action?

Blast from the past ${ }^{[8]}$

- Why chose the Wilson Action?
- $S=\sum \frac{\beta_{F}}{6} \operatorname{Tr} U+$ $\frac{\beta_{A}}{9}|\operatorname{Tr} U|^{2}$
[8] Bhanot, G. In: Phys. Lett. 108B (1982).

Blast from the past ${ }^{[8]}$

- Why chose the Wilson Action?
- $S=\sum \frac{\beta_{F}}{6} \operatorname{Tr} U+$ $\frac{\beta_{A}}{9}|\operatorname{Tr} U|^{2}$
- $\frac{1}{g_{0}^{2}}=\frac{\beta_{0}}{6}+\frac{\beta_{A}}{3}$.

[^3]
Blast from the past ${ }^{[8]}$

- Why chose the Wilson Action?
- $S=\sum \frac{\beta_{F}}{6} \operatorname{Tr} U+$ $\frac{\beta_{A}}{9}|\operatorname{Tr} U|^{2}$
- $\frac{1}{g_{0}^{2}}=\frac{\beta_{0}}{6}+\frac{\beta_{A}}{3}$.
- Extrapolating from $1^{\text {st }}$ order line/ $g^{2}=1$ lines

Bhanot, G. In: Phys. Lett. 108B (1982).

Blast from the past ${ }^{[8]}$

- Why chose the Wilson Action?
- $S=\sum \frac{\beta_{F}}{6} \operatorname{Tr} U+$ $\frac{\beta_{A}}{9}|\operatorname{Tr} U|^{2}$
- $\frac{1}{g_{0}^{2}}=\frac{\beta_{0}}{6}+\frac{\beta_{A}}{3}$.
- Extrapolating from $1^{\text {st }}$ order line/ $g^{2}=1$ lines
- Potts Model:

$$
\frac{d \beta_{A}}{d \beta_{F}} \approx 1.26
$$

Blast from the past ${ }^{[8]}$

- Why chose the Wilson Action?
- $S=\sum \frac{\beta_{F}}{6} \operatorname{Tr} U+$ $\frac{\beta_{A}}{9}|\operatorname{Tr} U|^{2}$
- $\frac{1}{g_{0}^{2}}=\frac{\beta_{0}}{6}+\frac{\beta_{A}}{3}$.
- Extrapolating from $1^{\text {st }}$ order line/ $g^{2}=1$ lines
- Potts Model: $\frac{d \beta_{A}}{d \beta_{F}} \approx 1.26$
- Moore's Law + Bad News

Bhanot, G. In: Phys. Lett. 108B (1982).

$S=\sum \frac{\beta_{0}}{6} \operatorname{Tr} U+\beta_{1} \operatorname{Tr} U^{2}$

$S=\sum \frac{\beta_{0}}{6} \operatorname{Tr} U+\beta_{1} \operatorname{Tr} U^{2}$

$S=\sum \frac{\beta_{0}}{6} \operatorname{Tr} U+\beta_{1} \operatorname{Tr} U^{2}$

Seem to reach $\beta_{S U(3)} \approx 6$

What are the states of strongly-coupled theories?

What are the states of strongly-coupled theories?

What is the proton state in terms of quarks and gluons?

$E \rho O Q$: A hybrid quantum-classical technique

[9] Lamm, H. and S. Lawrence. In: Phys. Rev. Lett. 121 (2018). arXiv: 1806.06649 [quant-ph].

$E \rho O Q$: A hybrid quantum-classical technique

- Combine resources to solve nonequilibrium dynamics of many-body quantum systems ${ }^{[9]}$

[^4]
$E \rho O Q$: A hybrid quantum-classical technique

- Combine resources to solve nonequilibrium dynamics of many-body quantum systems ${ }^{[9]}$

$$
\langle\mathcal{O}(t)\rangle=\frac{\operatorname{Tr} \mathcal{O} e^{-i H_{1} t} \rho e^{i H_{1} t}}{\operatorname{Tr} \rho}
$$

$E \rho O Q$: A hybrid quantum-classical technique

- Combine resources to solve nonequilibrium dynamics of many-body quantum systems ${ }^{[9]}$

$$
\langle\mathcal{O}(t)\rangle=\frac{\operatorname{Tr} \mathcal{O} e^{-i H_{1} t} \rho e^{i H_{1} t}}{\operatorname{Tr} \rho}
$$

- Classical: Obtain density matrix $\rho=e^{-\beta H_{0}}$ by Monte Carlo

$E \rho O Q$: A hybrid quantum-classical technique

- Combine resources to solve nonequilibrium dynamics of many-body quantum systems ${ }^{[9]}$

$$
\langle\mathcal{O}(t)\rangle=\frac{\operatorname{Tr} \mathcal{O} e^{-i H_{1} t} \rho e^{i H_{1} t}}{\operatorname{Tr} \rho}
$$

- Classical: Obtain density matrix $\rho=e^{-\beta H_{0}}$ by Monte Carlo
- Quantum: Time-evolve elements of ρ as pure states

> [9] Lamm, H. and S. Lawrence. In: Phys. Rev. Lett. 121 (2018). arXiv: 1806.06649 [quant-ph].

What can we do now?

What can we do now？

Heisenberg Spin Chain in Magnetic Fields
申申申申\＄。申

What can we do now?

Heisenberg Spin Chain in Magnetic Fields

$\left\langle m_{x}(t)\right\rangle$ for a $N=5$ with $\mu_{x}(0)=1, \beta=1$, and $\mu_{x}(t>0)=-1$. Forest QVM are red circles and exact result is black line.

What can we do now?

Heisenberg Spin Chain in Magnetic Fields

$\left\langle m_{x}(t)\right\rangle$ for a $N=5$ with $\mu_{x}(0)=1, \beta=1$, and $\mu_{x}(t>0)=-1$. Forest QVM are red circles and exact result is black line.
$\left\langle m_{x}(t)\right\rangle /\left\langle m_{x}(0)\right\rangle$ for $N=1$, with $\mu_{x}(0)=1$, $\mu_{z}(0)=1, \beta=1.0$, and $\mu_{x}(t>0)=-1$. Agave are red circles and exact result is black line.

Can we use LQCD to initialize real-time efficiently?

Can we use LQCD to initialize real-time efficiently?

- Proposal for extending $\mathrm{E} \rho \mathrm{OQ}$ to QFT a la Schwinger-Kelydsh:

$$
\langle\mathcal{O}\rangle=\frac{\operatorname{Tr} \rho_{i j} P_{j k} \mathcal{O}_{k i}}{\operatorname{Tr} \rho_{i j} \delta_{j i}}
$$

Can we use LQCD to initialize real-time efficiently?

- Proposal for extending E $\rho \mathrm{OQ}$ to QFT a la Schwinger-Kelydsh:

$$
\langle\mathcal{O}\rangle=\frac{\operatorname{Tr} \rho_{i j} P_{j k} \mathcal{O}_{k i}}{\operatorname{Tr} \rho_{i j} \delta_{j i}}
$$

- Classical: Euclidean Lattice QCD with open boundary conditions yields $\rho_{i j}$

Can we use LQCD to initialize real-time efficiently?

- Proposal for extending E $\rho \mathrm{OQ}$ to QFT a la Schwinger-Kelydsh:

$$
\langle\mathcal{O}\rangle=\frac{\operatorname{Tr} \rho_{i j} P_{j k} \mathcal{O}_{k i}}{\operatorname{Tr} \rho_{i j} \delta_{j i}}
$$

- Classical: Euclidean Lattice QCD with open boundary conditions yields $\rho_{i j}$
- Quantum: Time-evolve elements of $\rho_{i j}$ with projection onto quantum numbers via P as pure states

Can we use LQCD to initialize real-time efficiently?

- Proposal for extending E $\rho \mathrm{OQ}$ to QFT a la Schwinger-Kelydsh:

$$
\langle\mathcal{O}\rangle=\frac{\operatorname{Tr} \rho_{i j} P_{j k} \mathcal{O}_{k i}}{\operatorname{Tr} \rho_{i j} \delta_{j i}}
$$

- Classical: Euclidean Lattice QCD with open boundary conditions yields $\rho_{i j}$
- Quantum: Time-evolve elements of $\rho_{i j}$ with projection onto quantum numbers via P as pure states
- Signal to noise problem, Sign problem?

What low-level primatives are required?

What low-level primatives are required?

- $1 G$-register Inversion gate: $\mathfrak{U}_{-1}|g\rangle=\left|g^{-1}\right\rangle$

What low-level primatives are required?

- $1 G$-register Inversion gate: $\mathfrak{U}_{-1}|g\rangle=\left|g^{-1}\right\rangle$
- $2 G$-register Matrix Multiplication gate: $\mathfrak{U}_{\times}|g\rangle|h\rangle=|g\rangle|g h\rangle$

What low-level primatives are required?

- $1 G$-register Inversion gate: $\mathfrak{U}_{-1}|g\rangle=\left|g^{-1}\right\rangle$
- $2 G$-register Matrix Multiplication gate: $\mathfrak{U}_{\times}|g\rangle|h\rangle=|g\rangle|g h\rangle$
- $1 G$-register Trace gate $\mathfrak{U}_{\operatorname{Tr}}(\theta)|g\rangle=e^{i \theta \operatorname{Re} \operatorname{Tr} g}|g\rangle$

What low-level primatives are required?

- $1 G$-register Inversion gate: $\mathfrak{U}_{-1}|g\rangle=\left|g^{-1}\right\rangle$
- $2 G$-register Matrix Multiplication gate: $\mathfrak{U}_{\times}|g\rangle|h\rangle=|g\rangle|g h\rangle$
- $1 G$-register Trace gate $\mathfrak{U}_{\operatorname{Tr}}(\theta)|g\rangle=e^{i \theta \operatorname{Re} \operatorname{Tr} g}|g\rangle$
- $1 G$-register Fourier Transform gate:

$$
\mathfrak{U}_{F} \sum_{g \in G} f(g)|g\rangle=\sum_{\rho \in \hat{G}} \hat{f}(\rho)_{i j}|\rho, i, j\rangle
$$

What low-level primatives are required?

- $1 G$-register Inversion gate: $\mathfrak{U}_{-1}|g\rangle=\left|g^{-1}\right\rangle$
- $2 G$-register Matrix Multiplication gate: $\mathfrak{U}_{\times}|g\rangle|h\rangle=|g\rangle|g h\rangle$
- $1 G$-register Trace gate $\mathfrak{U}_{\operatorname{Tr}}(\theta)|g\rangle=e^{i \theta \operatorname{Re} \operatorname{Tr} g}|g\rangle$
- $1 G$-register Fourier Transform gate:
$\mathfrak{U}_{F} \sum_{g \in G} f(g)|g\rangle=\sum_{\rho \in \hat{G}} \hat{f}(\rho)_{i j}|\rho, i, j\rangle$
- $2 \mathbb{C}$-register Inner Product gate:

$$
\left\langle\tilde{\phi}_{1} \tilde{\phi}_{2}\right| \mathfrak{U}_{\langle\cdot,\rangle}(\theta)\left|\phi_{1} \phi_{2}\right\rangle=\delta_{\phi_{1}}^{\tilde{\phi}_{1}} \delta_{\phi_{2}}^{\tilde{\phi}_{2}} e^{i \theta\left[\phi_{2}^{\dagger} \phi_{1}+\phi_{1}^{\dagger} \phi_{2}\right]}
$$

Evaluation of correlators is nontrivial ${ }^{[10]}$

[^5] 113 (2 2014).

Evaluation of correlators is nontrivial ${ }^{[10]}$

Expectation value of a unitary operator U in a given state $|\Psi\rangle$. Introducing a single ancillary qubit, we construct a controlled unitary operator U_{C}, defined by

$$
\begin{equation*}
U_{C}|\Psi\rangle|0\rangle=|\Psi\rangle|0\rangle \text { and } U_{C}|\Psi\rangle|1\rangle=U|\Psi\rangle|1\rangle \tag{4}
\end{equation*}
$$

[^6]
Evaluation of correlators is nontrivial ${ }^{[10]}$

Expectation value of a unitary operator U in a given state $|\Psi\rangle$. Introducing a single ancillary qubit, we construct a controlled unitary operator U_{C}, defined by

$$
\begin{equation*}
U_{C}|\Psi\rangle|0\rangle=|\Psi\rangle|0\rangle \text { and } U_{C}|\Psi\rangle|1\rangle=U|\Psi\rangle|1\rangle \tag{4}
\end{equation*}
$$

Generally, the expectation value of U has both real and imaginary parts.

$$
\begin{equation*}
(\langle\Psi| \otimes\langle+|) U_{C}^{\dagger}\left(\mathbb{1} \otimes \sigma_{x}\right) U_{C}(|\Psi\rangle \otimes|+\rangle)=\operatorname{Re}\langle\Psi| U|\Psi\rangle \tag{5}
\end{equation*}
$$

[^7]
Evaluation of correlators is nontrivial ${ }^{[10]}$

Expectation value of a unitary operator U in a given state $|\Psi\rangle$. Introducing a single ancillary qubit, we construct a controlled unitary operator U_{C}, defined by

$$
\begin{equation*}
U_{C}|\Psi\rangle|0\rangle=|\Psi\rangle|0\rangle \text { and } U_{C}|\Psi\rangle|1\rangle=U|\Psi\rangle|1\rangle \tag{4}
\end{equation*}
$$

Generally, the expectation value of U has both real and imaginary parts.

$$
\begin{equation*}
(\langle\Psi| \otimes\langle+|) U_{C}^{\dagger}\left(\mathbb{1} \otimes \sigma_{x}\right) U_{C}(|\Psi\rangle \otimes|+\rangle)=\operatorname{Re}\langle\Psi| U|\Psi\rangle \tag{5}
\end{equation*}
$$

With this procedure in mind, how to compute a correlator of the form

$$
\begin{equation*}
\langle\Psi| \mathcal{U}(-t) W_{\mu^{\prime} \nu^{\prime}}\left(x^{\prime}\right) \mathcal{U}(t) W_{\mu \nu}(x)|\Psi\rangle \tag{6}
\end{equation*}
$$

[^8]
Evaluation of correlators is nontrivial ${ }^{[10]}$

Expectation value of a unitary operator U in a given state $|\Psi\rangle$. Introducing a single ancillary qubit, we construct a controlled unitary operator U_{C}, defined by

$$
\begin{equation*}
U_{C}|\Psi\rangle|0\rangle=|\Psi\rangle|0\rangle \text { and } U_{C}|\Psi\rangle|1\rangle=U|\Psi\rangle|1\rangle \tag{4}
\end{equation*}
$$

Generally, the expectation value of U has both real and imaginary parts.

$$
\begin{equation*}
(\langle\Psi| \otimes\langle+|) U_{C}^{\dagger}\left(\mathbb{1} \otimes \sigma_{x}\right) U_{C}(|\Psi\rangle \otimes|+\rangle)=\operatorname{Re}\langle\Psi| U|\Psi\rangle \tag{5}
\end{equation*}
$$

With this procedure in mind, how to compute a correlator of the form

$$
\begin{equation*}
\langle\Psi| \mathcal{U}(-t) W_{\mu^{\prime} \nu^{\prime}}\left(x^{\prime}\right) \mathcal{U}(t) W_{\mu \nu}(x)|\Psi\rangle \tag{6}
\end{equation*}
$$

The operator is not unitary, so cant be evaluated by means described above. Introduce a time-dependent perturbation of the Hamiltonian:

$$
\begin{equation*}
H_{\epsilon_{1}, \epsilon_{2}}(\tau)=H_{0}+\epsilon_{2} \delta(\tau-t) W_{\mu^{\prime} \nu^{\prime}}\left(x^{\prime}\right)+\epsilon_{1} \delta(\tau) W_{\mu \nu}(x) \tag{7}
\end{equation*}
$$

[^9]
Evaluation of correlators is nontrivial ${ }^{[10]}$

Expectation value of a unitary operator U in a given state $|\Psi\rangle$. Introducing a single ancillary qubit, we construct a controlled unitary operator U_{C}, defined by

$$
\begin{equation*}
U_{C}|\Psi\rangle|0\rangle=|\Psi\rangle|0\rangle \text { and } U_{C}|\Psi\rangle|1\rangle=U|\Psi\rangle|1\rangle \tag{4}
\end{equation*}
$$

Generally, the expectation value of U has both real and imaginary parts.

$$
\begin{equation*}
(\langle\Psi| \otimes\langle+|) U_{C}^{\dagger}\left(\mathbb{1} \otimes \sigma_{x}\right) U_{C}(|\Psi\rangle \otimes|+\rangle)=\operatorname{Re}\langle\Psi| U|\Psi\rangle \tag{5}
\end{equation*}
$$

With this procedure in mind, how to compute a correlator of the form

$$
\begin{equation*}
\langle\Psi| \mathcal{U}(-t) W_{\mu^{\prime} \nu^{\prime}}\left(x^{\prime}\right) \mathcal{U}(t) W_{\mu \nu}(x)|\Psi\rangle \tag{6}
\end{equation*}
$$

The operator is not unitary, so cant be evaluated by means described above. Introduce a time-dependent perturbation of the Hamiltonian:

$$
\begin{equation*}
H_{\epsilon_{1}, \epsilon_{2}}(\tau)=H_{0}+\epsilon_{2} \delta(\tau-t) W_{\mu^{\prime} \nu^{\prime}}\left(x^{\prime}\right)+\epsilon_{1} \delta(\tau) W_{\mu \nu}(x) \tag{7}
\end{equation*}
$$

Time evolving forward in time with $H_{\epsilon_{1}, \epsilon_{2}}$, and back with H_{0} gives $C\left(\epsilon_{1}, \epsilon_{2}\right) \equiv\langle\Psi| \mathcal{U}(-t) \mathcal{U}_{\epsilon_{1}}, \epsilon_{2}(t)|\Psi\rangle$. Differentiating twice

$$
\begin{equation*}
-\left.\frac{\partial^{2} C\left(\epsilon_{1}, \epsilon_{2}\right)}{\partial \epsilon_{1} \partial \epsilon_{2}}\right|_{\epsilon_{1}=\epsilon_{2}=0}=\left\langle\mathcal{U}(-t) W_{\mu^{\prime} \nu^{\prime}}\left(x^{\prime}\right) \mathcal{U}(t) W_{\mu \nu}(x)\right\rangle \tag{8}
\end{equation*}
$$

[^10]
Results for $2+1 \mathrm{D} D_{4}$ gauge theory

Four D_{4} registers, and uses a total of 14 qubits: 12 for physical degrees of freedom, and 2 ancillary qubits. $t=10$ with a Trotterization step of $\Delta t=0.2$. In total, the quantum simulation entailed ~ 200 entangling gates per Trotterization time step.

How to obtain parton distribution functions?

$$
\begin{equation*}
f(\xi)=\int_{\infty}^{\infty} \frac{d t}{2 \pi} e^{-i \xi(n \cdot P)}\langle P| \bar{\psi}\left(t n^{\mu}\right) \gamma^{+} W_{n} \psi(0)|P\rangle \tag{9}
\end{equation*}
$$

How to obtain parton distribution functions?

$$
\begin{equation*}
f(\xi)=\int_{\infty}^{\infty} \frac{d t}{2 \pi} e^{-i \xi(n \cdot P)}\langle P| \bar{\psi}\left(t n^{\mu}\right) \gamma^{+} W_{n} \psi(0)|P\rangle \tag{9}
\end{equation*}
$$

Simplfy to $1+1$ Thirring, then the matrix element

$$
\begin{equation*}
\langle P| \chi^{\dagger}\left(t n^{\mu}\right) \chi(0)|P\rangle=\langle P| e^{i H t} \chi^{\dagger}(y) e^{-i H t} \chi(0)|P\rangle=\sum_{i, j=\{x, y\}} \frac{c_{i j}}{4}\langle P| U_{i, j}|P\rangle \tag{10}
\end{equation*}
$$

in K-S prochedure $\chi \propto \sigma_{+}$and $\chi^{\dagger} \propto \sigma_{-}$which can only be measured by decomposing into σ_{x} and σ_{y} measurements, so need 4 simulations where

$$
\begin{equation*}
U_{i, j}=e^{i H t} \sigma_{i} e^{-i H t} \sigma_{j} \tag{11}
\end{equation*}
$$

How to obtain parton distribution functions?

$$
\begin{equation*}
f(\xi)=\int_{\infty}^{\infty} \frac{d t}{2 \pi} e^{-i \xi(n \cdot P)}\langle P| \bar{\psi}\left(t n^{\mu}\right) \gamma^{+} W_{n} \psi(0)|P\rangle \tag{9}
\end{equation*}
$$

Simplfy to $1+1$ Thirring, then the matrix element

$$
\begin{equation*}
\langle P| \chi^{\dagger}\left(n^{\mu}\right) \chi(0)|P\rangle=\langle P| e^{i H t} \chi^{\dagger}(y) e^{-i H t} \chi(0)|P\rangle=\sum_{i, j=\{x, y\}} \frac{c_{i j}}{4}\langle P| U_{i, j}|P\rangle \tag{10}
\end{equation*}
$$

in K-S prochedure $\chi \propto \sigma_{+}$and $\chi^{\dagger} \propto \sigma_{-}$which can only be measured by decomposing into σ_{x} and σ_{y} measurements, so need 4 simulations where

$$
\begin{equation*}
U_{i, j}=e^{i H t} \sigma_{i} e^{-i H t} \sigma_{j} \tag{11}
\end{equation*}
$$

With this Hermitian construction, we can use the same U_{C} based procedure prevent collapse after first measurement σ_{j} at the cost of $2 \times$ the measurements so 8 calculations per matrix element.

Ongoing Work of NuQS Collaboration

Ongoing Work of NuQS Collaboration

- Quantum Compilers
- Remember before FORTRAN?

Ongoing Work of NuQS Collaboration

- Quantum Compilers
- Remember before FORTRAN?
- Digitize Gauge Theories
- Efficent Approximations?

Ongoing Work of NuQS Collaboration

- Quantum Compilers
- Remember before FORTRAN?
- Digitize Gauge Theories
- Efficent Approximations?
- Initialize w/ Lattice Field Theory
- Avoid the state specificiation?

Ongoing Work of NuQS Collaboration

- Quantum Compilers
- Remember before FORTRAN?
- Digitize Gauge Theories
- Efficent Approximations?
- Initialize w/ Lattice Field Theory
- Avoid the state specificiation?
- Evaluate Composite matrix elements

- Parton Distribution Functions?

[^0]: [6] Alexandru, A., P. F. Bedaque, H. Lamm, and S. Lawrence. In: (2019). arXiv: 1903.06577 [hep-lat].

[^1]: [6] Alexandru, A., P. F. Bedaque, H. Lamm, and S. Lawrence. In: (2019). arXiv: 1903.06577 [hep-lat].

[^2]: [6] Alexandru, A., P. F. Bedaque, H. Lamm, and S. Lawrence. In: (2019). arXiv: 1903.06577 [hep-lat].

[^3]: [8] Bhanot, G. In: Phys. Lett. 108B (1982).

[^4]: [9] Lamm, H. and S. Lawrence. In: Phys. Rev. Lett. 121 (2018). arXiv: 1806.06649 [quant-ph].

[^5]: [10] Pedernales, J. S., R. Di Candia, I. L. Egusquiza, J. Casanova, and E. Solano. In: Phys. Rev. Lett,

[^6]: [10] Pedernales, J. S., R. Di Candia, I. L. Egusquiza, J. Casanova, and E. Solano. In: Phys. Rev. Lett. 113 (2 2014).

[^7]: [10] Pedernales, J. S., R. Di Candia, I. L. Egusquiza, J. Casanova, and E. Solano. In: Phys. Rev. Lett. 113 (2 2014).

[^8]: [10] Pedernales, J. S., R. Di Candia, I. L. Egusquiza, J. Casanova, and E. Solano. In: Phys. Rev. Lett. 113 (2 2014).

[^9]: [10] Pedernales, J. S., R. Di Candia, I. L. Egusquiza, J. Casanova, and E. Solano. In: Phys. Rev. Lett. 113 (2 2014).

[^10]: [10]
 Pedernales, J. S., R. Di Candia, I. L. Egusquiza, J. Casanova, and E. Solano. In: Phys. Rev. Lett. 113 (2 2014).

