Walking, σ-particle vs. dilaton, complex CFT (the sextet case study)

Lattice Higgs Collaboration ($\mathrm{L}_{\mathrm{at}} \mathrm{HC}$)
Zoltan Fodor, Kieran Holland, JK, Daniel Nogradi, Chik Him Wong

Julius Kuti
University of California, San Diego

Lattice BSM Workshop 2019

University of Syracuse, May 2-3, 2019

*Tantalizing big questions in the sextet case study:

Origin of near-conformal walking?

How light is the emergent $0++$ scalar in chiral limit?

Need to extrapolate with IR EFT like σ-model, or dilaton, or ...

Need for new strategy of EFT in massless chiral limit

EFT in complex CFT walking paradigm?
review of our recent results under these tantalizing questions \rightarrow

Tantalus, a king of ancient Phrygia in Greek mythology, made the mistake of gravely offending the gods. As a punishment, once dead the king was forced to stand in a pool of water, with fruit hanging just over his head. The water would recede every time the king tried to take a sip, and the fruit would lift away every time he reached to take a bite.
origin of the emergent light 0++ scalar (o-particle or dilaton?)

χ SB on $\Lambda \sim \mathrm{TeV}$ scale
three Goldstone pions become longitudinal components of weak bosons
if Susskind and Weinberg only knew ...
composite Higgs mechanism

- $\mathrm{nf}=10 \beta$-function (no IRFP is found so far, contrary to earlier claims)
- $\mathrm{nf}=12 \beta$-function controversy includes anomalous dimension
- $\mathrm{nf}=13 \beta$-function LatHC reports $\mathrm{nf}=13$ conformal IRFP (?)
- 5-loop β-function below CW: a pair of complex conjugate zeros (complex CFT help?)
- several models close to CW - focus in this talk on the sextet model

origin of the emergent light 0++ scalar (б-particle or dilaton?)

- two zeros of 5 -loop β-function collide between $\mathrm{nf}=12$ and $\mathrm{nf}=13$ and turn into complex conjugate pair of zeros
- sextet model closest to CW among near-conformal (except perhaps $n f=12$?) complex pair of CFT?

origin of the emergent light 0++ scalar (б-particle, or dilaton, or ...?)

simplest: light Higgs-like particle of linear σ-model in PT:
$S U(2) \otimes S U(2) \sim O(4)$ for sextet model
triviality analysis in $\mathrm{m}_{\sigma} / \mathrm{f}_{\pi}<3$ range
$L=\frac{1}{2}\left(\partial_{\mu} \vec{\pi}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}-\frac{1}{2} \mu^{2}\left(\sigma^{2}+\vec{\pi}^{2}\right)+\frac{1}{4} g\left(\sigma^{2}+\vec{\pi}^{2}\right)^{2}$ $\mathrm{m}_{\pi}=0$ circa 1987-1988
non-linear σ-model \rightarrow dilaton EFT: $\longleftarrow \mathrm{P}$-regime data: $0++$ is tracking the Goldstone

$L=\frac{1}{2} \partial_{\mu} \sigma \partial_{\mu} \sigma-V(\sigma)+\frac{f_{\pi}^{2}}{4}\left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma\right) \cdot\left(1+2 a \frac{\sigma}{f_{\pi}}+b \frac{\sigma^{2}}{f_{\pi}^{2}}+b_{3} \frac{\sigma^{3}}{f_{\pi}^{3}}+\ldots\right)$ $\Sigma=\mathrm{e}^{i \tau^{a} \tau^{a} / f_{\pi}}$ with τ^{a} Pauli matrices
$V(\sigma)=\frac{1}{2} m_{\sigma}^{2} \cdot \sigma^{2}+d_{3}\left(\frac{m_{\sigma}^{2}}{2 f_{\pi}}\right) \cdot \sigma^{3}+d_{4}\left(\frac{m_{\sigma}^{2}}{8 f_{\pi}^{2}}\right) \cdot \sigma^{4}+\ldots$
linear σ-model limit (SM): $a=b=d_{3}=d_{4}=1$
dilaton EFT will require $a=b^{2}, b_{3}=0$ and special $\mathrm{y}(\mu)$ in L
we analyze dilaton EFT first and test if non-linear σ-model limit exists without scale-dependent anomalous dimension y

dilaton EFT with $\sigma(\mathrm{x})$ dilaton field and $\pi^{\mathrm{a}}(\mathrm{x})$ Goldstone bosons
$L=\frac{1}{2} \partial_{\mu} \chi \partial_{\mu} \chi-V_{\mathrm{d}}(\chi)+\frac{f_{\pi}^{2}}{4}\left(\frac{\chi}{f_{d}}\right)^{2} \operatorname{tr}\left[\partial_{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma\right]-\frac{f_{\pi}^{2} m_{\pi}^{2}}{4}\left(\frac{\chi}{f_{d}}\right)^{y} \operatorname{tr}\left(\Sigma+\Sigma^{\dagger}\right)$
$y=3-\gamma$ where γ is the mass anomalous dimension
$\chi(x)=f_{d} e^{\sigma(x) / f_{d}}$ describes the dilaton field $\sigma(x)$
pion field $\Sigma=\mathrm{e}^{i \pi^{a} \tau^{a} / f_{\pi}}$ with τ^{a} Pauli matrices, tree level pion mass $m_{\pi}^{2}=2 B m$

dilaton EFT with $\sigma(\mathrm{x})$ dilaton field and $\pi^{\mathrm{a}}(\mathrm{x})$ Goldstone bosons
$L=\frac{1}{2} \partial_{\mu} \chi \partial_{\mu} \chi-V_{\mathrm{d}}(\chi)+\frac{f_{\pi}^{2}}{4}\left(\frac{\chi}{f_{d}}\right)^{2} \operatorname{tr}\left[\partial_{\mu} \Sigma^{\dagger} \partial_{\mu} \Sigma\right]-\frac{f_{\pi}^{2} m_{\pi}^{2}}{4}\left(\frac{\chi}{f_{d}}\right)^{y} \operatorname{tr}\left(\Sigma+\Sigma^{\dagger}\right)$
$y=3-\gamma$ where γ is the mass anomalous dimension $\chi(x)=f_{d} e^{\sigma(x) / f_{d}}$ describes the dilaton field $\sigma(x)$

Golterman-Shamir
Appelquist et al. notation
but we do our own IML analysis which is required for any conclusion! pion field $\Sigma=\mathrm{e}^{i \pi^{a} \tau^{a} / f_{\pi}}$ with τ^{a} Pauli matrices, tree level pion mass $m_{\pi}^{2}=2 B m$

$M_{\pi}^{2} \cdot F_{\pi}^{2-y}-2 B_{\pi} \cdot f_{\pi}^{(2-y)} \cdot m=0$ general V indep. scaling law
$F_{\pi}^{(4-y)} \cdot\left(1-f_{\pi}^{2} / F_{\pi}^{2}\right)-2 y \cdot n_{f} f_{\pi}^{(6-y)} B_{\pi} / m_{d}^{2} f_{d}^{2} \cdot m=0, \quad V_{\sigma}^{\prime}\left(\chi=F_{d}\right)$
$3 F_{\pi}^{2} / M_{\pi}^{2}-f_{\pi}^{2} / M_{\pi}^{2}-2 M_{d}^{2} / m_{d}^{2} \cdot f_{\pi}^{2} / M_{\pi}^{2}-y(y-1) n_{f} f_{\pi}^{4} / m_{d}^{2} f_{d}^{2}=0 \quad V_{\sigma}^{\prime \prime}\left(\chi=M_{d}\right)$
$F_{\pi}^{(4-y)} \cdot \log \left(F_{\pi} / f_{\pi}\right)-y \cdot n_{f} f_{\pi}^{(6-y)} B_{\pi} \cdot m / m_{d}^{2} f_{d}^{2}=0 \quad V_{d}^{\prime}\left(\chi=F_{d}\right)$
$\left(F_{\pi}^{2} / M_{\pi}^{2}\right) \cdot\left(3 \log \left(F_{\pi} / f_{\pi}\right)+1\right)-\left(M_{d}^{2} / m_{d}^{2}\right) \cdot\left(f_{\pi}^{2} / M_{\pi}^{2}\right)-y(y-1) n_{f} f_{\pi}^{4} / 2 m_{d}^{2} f_{d}^{2}=0 \quad V_{d}^{\prime \prime}\left(\chi=M_{d}\right)$
M_{π}, F_{π}, M_{d} input data at each m $f_{\pi}, B, f_{d}, m_{d}, y$ fitted for all m

IML: Implicit Maximum Likelihood test IML is very different from ML fitting

Perfect fits for V_{σ} !

V_{d} fails!

dilaton EFT with $\sigma(x)$ dilaton field and $\pi^{a}(x)$ Goldstone bosons (sextet model)

excellent sextet fits for V_{σ} ! also works at $\mathrm{N}_{f}=8$
problem with Golterman-Shamir form of V_{d} not consistent with sextet data, or $\mathrm{N}_{\mathrm{f}}=8$ data! and what is the meaning of the fixed $\gamma ?$
dilaton EFT with $\sigma(\mathrm{x})$ dilaton field and $\pi^{a}(\mathrm{x})$ Goldstone bosons (sextet model)

- Chebyshev expansion of mode number
- infinite volume limit from FSS
- m -> 0 chiral limit at fixed a
- a -> 0 continuum limit

dilaton EFT with $\sigma(\mathrm{x})$ dilaton field and $\pi^{a}(\mathrm{x})$ Goldstone bosons (sextet model)

- the dilaton potential of ShamirGolterman as tree level theory expanding around IRFP is not working for sextet data
- consistent LatHC analysis for two lattice spacing, with third under construction
- similar conclusion at $\mathrm{nf}=8$ although single lattice spacing
- data is far above pion dominated chiral regime

epsilon regime and RMT

$$
\begin{array}{ll}
\mathscr{L}_{\varepsilon}=\frac{1}{2} \partial_{\mu} \chi \partial_{\mu} \chi-V_{d}(\chi)+\frac{m_{\pi}^{2} f_{\pi}^{2}}{4}\left(\frac{\chi}{f_{d}}\right)^{y} \operatorname{tr}\left[\Sigma_{0}+\Sigma_{0}^{\dagger}\right] & \begin{array}{l}
\text { epsilon regime with very small fermion } \\
\text { mass deformation }
\end{array} \\
\mathscr{L}_{\delta}=\frac{1}{2} \partial_{\mu} \chi \partial_{\mu} \chi-V(\chi)+\frac{f_{\pi}^{2}}{4}\left(\frac{\chi}{f_{d}}\right)^{2} \operatorname{tr}\left[\partial_{t} \Sigma_{0} \partial_{t} \Sigma_{0}^{\dagger}\right] & \begin{array}{l}
\text { delta regime m=0 } \\
\text { very small fermion mass deformation } \\
\text { can be added }
\end{array}
\end{array}
$$

new ensembles at equivalent p-regime pion mass Mpi ~ 100 and volume size 644

epsilon regime and RMT

successful testing

ongoing analysis (preliminary results not shown)

walking and complex CFT

PHYSICAL REVIEW D 82, 045013 (2010)

$\mathcal{L}_{\mathrm{CFT}}+\frac{f}{2} \mathcal{O}_{i j}^{\dagger} \mathcal{O}^{i j}$. four-fermion deformation
$\Lambda \frac{d \bar{f}}{d \Lambda}=v \bar{f}^{2}+(2 \Delta-d) \bar{f}+a$
$\left.\beta_{f}^{\prime}\right|_{ \pm}= \pm 2 \sqrt{D}$

$$
\Delta_{ \pm}=\frac{d}{2} \pm \sqrt{D}
$$

Luca Vecchi 2010 talks about complex CFT built on Gies et al., Terao et al., Kaplan et al....
walking and complex CFT new paradigm?
flavor symmetry group is the same for walker and the CFT! paradigm change

walking and complex CFT

PHYSICAL REVIEW D 82, 045013 (2010)

$\mathcal{L}_{\mathrm{CFT}}+\frac{f}{2} \mathcal{O}_{i j}^{\dagger} \mathcal{O}^{i j}$. four-fermion deformation
$\Lambda \frac{d \bar{f}}{d \Lambda}=v \bar{f}^{2}+(2 \Delta-d) \bar{f}+a$
$\left.\beta_{f}^{\prime}\right|_{ \pm}= \pm 2 \sqrt{D}$
$\Delta_{ \pm}=\frac{d}{2} \pm \sqrt{D}$

Luca Vecchi 2010 talks about complex CFT built on Gies et al., Terao et al., Kaplan et al....
walking and complex CFT new paradigm?
flavor symmetry group is the same for walker and the CFT! paradigm change
we started work earlier on the realization of walking based on this idea
to distinguish near-conformal and conformal finite volume correlators (drifting scaling exponents distinguished from fixed conformal exponents). we ran into difficulty not knowing the conformal exponents of the complex theory.

Gorbenko, Rychkov, Zan turned to a two-dimensional example (Potts model) for very detailed realization of working without apparently knowing about Vecchi

We ask now: can we realize the lattice Potts conformal field theories for continuous Q (flavor)

walking and complex CFT

Potts model Q potts spin ~ flavor described by CFT

Q=2-4 pair of real CFT with pair of zeros of the beta function works for continuous Q in cluster rep

Q > 4 complex CFT, like $Q=5,6,7 \ldots$
What was identified before as $\mathrm{Q}=5$ Potts is near-conformal and walking, supported by the complex IRFP pair, not critical in very well defined sense

Gorbenko, Rychkov, Zan

two-loop β-function from real RG flow passing between two complex CFT Q=5

walking and complex CFT

Potts model Q potts spin ~ flavor described by CFT

Q=2-4 pair of real CFT with pair of zeros of the beta function works for continuous Q in cluster rep

Q > 4 complex CFT, like $Q=5,6,7 \ldots$
What was identified before as Q=5 Potts is near-conformal and walking, supported by the complex IRFP pair, not critical in very well defined sense

We use efficient Potts CUDA code for integer Q Swendsen-Wang $\sim 1 \mathrm{~ns} /$ spin

CPU cluster code for arbitrary Q
Tensor method and DMRG on Potts transfer matrix
working on lattice realization of the Potts complex CFT paradigm

Thank you

