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Transverse quantum Ising model

Spin basis Ising model

Ĥ = −J
∑Ns−1

i σ̂zi σ̂
z
i+1 − hT

∑Ns
i σ̂xi − Jbσ

z
Ns
σz1

Jb = +J, −J, 0 for periodic, anti-periodic, and open
boundary conditions respectively. (PBC, ABC, OBC).

“Particle” basis Ising model

Ĥ = −J
∑Ns−1

i σ̂xi σ̂
x
i+1 − hT

∑Ns
i σ̂zi − Jbσ

x
Ns
σx1

In “particle” basis the particle number is conserved modulo 2.
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J << ht with PBC or ABC

Definitions

Unperturbed Hamiltonian

Ĥ0 = −hT
∑Ns

i σzi

”Potential”

V̂ = −J
∑Ns−1

i σ̂xi σ̂
x
i+1+ boundary terms
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Corrections: non-degenerate

First order corrections:
〈x |V |x〉 = −J〈x |(|x + 1〉+ |x − 1〉+

∑
i |x , i , i + 1〉) = 0

Second order corrections:
∑

n
|〈ψn|V |ψm〉|2
En−hT ∗(N−2) = O(J2/hT )

Since single “particle” states are Ns -fold degenerate find
transformation to lift degeneracy
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Corrections: degenerate

use transformation |k〉 = 1√
Ns

∑Ns
x e

2πixk
Ns |x〉

first order corrections become:
〈k |V |k〉 = −J〈k |k〉(e2iπk/Ns + e−2iπk/Ns ) = −2Jcos(2πk/Ns)

Energies for the one “particle” states:

E
(1)
k = −hT (Ns − 2)− 2Jcos(2πk/Ns)

E. Gustafson , Y. Meurice J. Unmuth-Yockey Quantum simulation of the transverse Ising model
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Time evolution

Occupation probability 〈ψj(t)|n̂l |ψj(t)〉 ' |J(Ns)
l−j (2Jt)|2

Define “discrete” Bessel functions:
J
(Ns)
` (x) = (−i)`

Ns

∑Ns−1
m=0 e i((

2πm`
Ns

+xcos( 2πm
Ns

)))
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Time evolution: continued

Agreement between exact
diagonalization and
perturbation theory is quite
close.

1 particle PBC left, 2
particle ABC right for 8 sites

The quantity plotted on the
y axis is 〈nl(t)〉.

Deviations occur at time
scales much larger than time
frames of interest
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Evolution operator
Quantum circuit

Evolution operator

Definition of Evolution Operator

U(t) = e−itĤ

Because [H0,V ] 6= 0,

Trotterize Hamiltonian as follows:

split hamiltonian: Ĥ = V̂ Even + V̂ odd + Ĥ0

U(t) ' e−itV̂ even

e−itV̂ odd

e−itĤ0 +O(t2)

E. Gustafson , Y. Meurice J. Unmuth-Yockey Quantum simulation of the transverse Ising model
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Evolution operator
Quantum circuit

Quantum Circuit Full Hilbert Space (4 sites open boundary
conditions)

RZa =

(
e i(δt)hT 0

0 e−i(δt)hT

)
RXb =

(
cos(Jδt) isin(Jδt)
−isin(Jδt) cos(Jδt)

)
(1)

CX =

(
12x2 0

0 σx

)
(2)
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Evolution operator
Quantum circuit

Quantum Circuit Truncated Hilbert Space (4 sites periodic
boundary conditions)

|0〉

|1〉

X Rφ(hT δt) X Rφ(hT δt)

X

RX (Jδt)

X

Rφ(Jδt) =

(
1 0
0 e iJδt

)
, X =

(
0 1
1 0

)
(3)
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Trotter Error
Noise reduction
results

Trotter fidelities

left: open boundary
conditions, right:
periodic boundary
conditions

top: free propagation,
bottom: “scattering”
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Trotter Error
Noise reduction
results

Noise reduction

Frequently quantum gates are not correctly applied and
introduce some distortion into the state

Solve this problem by implementing noisier gates to so that
we can extrapolate a noiseless value:

Use the ansatz:

extrapolation

〈O(ε ∗ r ; t)〉 = A + B ∗ r + C ∗ r2

Polynomial Ansatz: N. Kclo et al. Arxiv: 1803.03326.
Noise Readout Correction: A. Kandala et al. Nature 549, 242
EP (2017)
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Trotter Error
Noise reduction
results

Comparison

Trotter error becomes
noticeable when
Jt > 4 (when
Jδt = 0.2)

Noise reduction
methods only get us
to trotter error
nothing better.
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Trotter Error
Noise reduction
results

Classical Simulations of Current Trapped Ions

OBC: left free propagation,
right scattering; green
expected near term digital
quantum computer, blue
current trapped ion.
Jδt = 0.2. Frames are
separated by Jt = 1.6.

results between exact and
simulation deviate when Jt
increases (we expect this)

results generally consistent
with ST approximation
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results

Classical Simulations of Current Quantum Computers

Figure: left truncated Hilbert space, right full hilbert space
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Classical Simulations of current Quantum Computers

Figure: left truncated Hilbert space, right full Hilbert space

E. Gustafson , Y. Meurice J. Unmuth-Yockey Quantum simulation of the transverse Ising model



21/29

Model
Real time evolution

Results
Extensions: phase shifts

Conclusions

Phase shifts

Figure: j = 0.02, ht = 1, impurity on
1 site of δht = 1.0

for J << ht the Ising model
is far away from the
continuum limit

examining discrete quantum
mechanics a better step to
look at phase shifts

E. Gustafson , Y. Meurice J. Unmuth-Yockey Quantum simulation of the transverse Ising model



21/29

Model
Real time evolution

Results
Extensions: phase shifts

Conclusions

Phase shifts

Figure: j = 0.02, ht = 1, impurity on
1 site of δht = 1.0

for J << ht the Ising model
is far away from the
continuum limit

examining discrete quantum
mechanics a better step to
look at phase shifts

E. Gustafson , Y. Meurice J. Unmuth-Yockey Quantum simulation of the transverse Ising model



22/29

Model
Real time evolution

Results
Extensions: phase shifts

Conclusions

Luscher formalism

In 1 dimension the phaseshifts can be extracted using
δ(k) = mod2π(−k ∗ L/2)

Where k =
√

2 ∗m ∗ E .
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Finite Square Well

given a well of width w , depth V 0, we have expressions for
the transmission and reflection coefficients:

t(k) = 4 kk ′e ikw

4kk ′cos(k ′w)−2.0(k ′2+k2)sin(k ′w)

r(k) = 2isin(k ′w)(k ′2−k2)
4kk ′cos(k ′w)−2.0(k ′2+k2)sin(k ′w)

the phase shifts can be extracted using the fact that the
scattered states are given by: |ψ±〉 = |k〉 ± C±(k)| − k〉,
where C± = 1/

√
2(t(k)± r(k)) and δ±(k)) = ln(C±(k))/(2i)

E. Gustafson , Y. Meurice J. Unmuth-Yockey Quantum simulation of the transverse Ising model
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Spectroscopy for L = 10, N = 32, w = 2, m = 1
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Spectroscopy for L = 5, N = 16, w = 2, m = 1
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Spectroscopy for L = 4, N = 8, w = 2, m = 1
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Variational Methods

Minimize the ansatz 〈ψ±(θ, φ)|V |ψ±(θ, φ)〉, where
|ψ±(θ, φ)〉 = cos(θ)|k〉+ e iφsin(θ)| − k〉.

extensions could include modes slightly higher or lower
momenta states.
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takeaway

Clever use of Hilbert space truncation will reduce noise in
system by reducing number of 2-qubit gates

Simulation of quantum mechanical systems is easily within
reach for small systems.

Calculation of Phase shifts for 1D systems is accessible for
small lattices with small number of qubits

Larger systems and gauge theories are somewhat further away.

See arxiv:1901.0544 for further details
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