## Victor Gorbenko (IAS)

## Walking RG Flows and Complex CFTs

with Slava Rychkov and Bernardo Zan
1808.04380, 1807.11512

## Walking RG flows

- Two well-known physical examples
- Weak 1st order phase transitions (CM)
- Walking technicolor (BSM)
- We propose that, it is the same RG phenomena, which, in some cases, can be described with the help of complex CFTs


## Walking RG flows for BSM

- WTC is a way to get around some of the constraints on composite Higgs models.
- Consider a strongly coupled sector which has approximate scale invariance in some range of energies $\Lambda_{I R}<E<\Lambda_{U V}$, and assume Higgs is a part of this sector.
- Then, in this range of energies, Higgs operator has some $\Delta_{H}$
- We couple it to the rest of the Standard Model:

$$
S_{F u l l}=S_{S M \backslash H}+S_{S t r o n g}+g_{i} \Lambda_{U V}^{1-\Delta_{H}} H \Psi_{i} \bar{\Psi}_{i}
$$

## Walking RG flows for BSM

$$
S_{F u l l}=S_{S M \backslash H}+S_{\text {Strong }}+g_{i} \Lambda_{U V}^{1-\Delta_{H}} H \Psi_{i} \bar{\Psi}_{i}
$$

-H gets a vev at the scale $\Lambda_{I R} \equiv E_{E W}$,

- So Yukawas are given by

$$
y_{i}=g_{i}\left(\frac{\Lambda_{I R}}{\Lambda_{U V}}\right)^{\Delta_{H}-1}
$$

- There are two contradicting requirements:

$$
-\quad y_{t} \sim 1 \rightarrow \Lambda_{U V} \sim \Lambda_{I R}
$$

- FCNC should be suppressed

$$
\frac{\Psi^{i} \Psi^{j} \bar{\Psi}^{k} \bar{\Psi}^{l}}{\Lambda_{U V}^{2}} \rightarrow \Lambda_{U V} \gg \Lambda_{I R}
$$

## Walking RG flows for phenomenology

$$
y_{i}=g_{i}\left(\frac{\Lambda_{I R}}{\Lambda_{U V}}\right)^{\Delta_{H}-1} \quad \frac{\Psi^{i} \Psi^{j} \bar{\Psi}^{k} \bar{\Psi}^{l}}{\Lambda_{U V}^{2}} \rightarrow \Lambda_{U V} \gg \Lambda_{I R}
$$

- Way out is to have $\Delta_{H} \sim 1$
- But this leads to another potential problem: in unitary CFTs,

$$
\Delta_{H} \sim 1 \rightarrow \Delta_{\left[H H^{\dagger}\right]}<4
$$

so we are back to fine-tuning problem due to a relevant singlet operator.


## Slow RG flows

Two ways of producing slow RG flows

"Mild Tuning"

"Walking"

## Mild Tuning

- Conformal Technicolor (Luty-Okui '04)

$$
S_{\text {Strong }}=C F T_{U V}+c \Lambda_{U V}^{4-\Delta} \mathcal{O}
$$

- Scale invariance is broken at $\quad \Lambda_{I R}=\Lambda_{U V} c^{\frac{1}{4-\Delta}}$
- $c \ll 1$ (symmetry)
- $\Delta \sim 4$ ("Mild" tuning)
- $\Delta=4$ Asymptotic freedom is a particular case of Mild tuning

Walking (Ex: Conformal window)

- Consider QCD with Nf flavors:

-What happens at the ends of the conformal window?

Walking (Conformal window)

- What happens at the ends of the conformal window?
- A fixed point cannot just disappear

- We can discuss more exotic scenarios later


## Walking (Ex: Conformal window)

- Let us discuss the vicinity of the annihilation point:
- Consider a "toy model"


$$
\beta_{\lambda}=\left(N_{f}-N_{f}^{*}\right)-\lambda^{2}
$$

- For $N_{f}>N_{f}^{*}$ there are two fixed points, but what happens for $N_{f} \lesssim N_{f}^{*}$ - for which walking has been observed on the lattice?


## Walking (Toy model)

$$
\beta_{\lambda}=\left(N_{f}-N_{f}^{*}\right)-\lambda^{2} \quad N_{f} \lesssim N_{f}^{*}
$$

- There are no real CFTs, but there are two complex solutions!

$$
\lambda= \pm i \sqrt{N_{f}^{*}-N_{f}}
$$

- Note that (the real) RG flow is walking and there is an exponentially large hierarchy of scales:

$$
\frac{\Lambda_{U V}}{\Lambda_{I} R}=\exp \left(-\int_{\lambda_{U V}}^{\lambda_{I R}} \frac{d \lambda}{\beta_{\lambda}}\right) \sim \exp \left(\frac{\pi}{\sqrt{N_{f}^{*}-N_{f}}}\right)
$$

- Walking occurs in the vicinity of a generic CFT merger point


## Walking RG flows

$$
\beta_{\lambda}=\left(N_{f}-N_{f}^{*}\right)-\lambda^{2} \quad \lambda= \pm i \sqrt{N_{f}^{*}-N_{f}}
$$

- Our main point is that these complex CFTs are still very useful to describe the real unitary RG flow, as long as imaginary parts are small.
- We can do Conformal Perturbation theory around $\mathcal{C}$ or $\overline{\mathcal{C}}$



## Walking RG flows

$$
\beta_{\lambda}=\left(N_{f}-N_{f}^{*}\right)-\lambda^{2} \quad \lambda= \pm i \sqrt{N_{f}^{*}-N_{f}}
$$

- Our main point is that these complex CFTs are still very useful to describe the real unitary RG flow, as long as imaginary parts are small.
- We can do Conformal Perturbation theory around $\mathcal{C}$ or $\overline{\mathcal{C}}$




## CPT around a complex CFT

- Imagine a complex CFT with an operator of dimension

$$
\Delta=d+i \epsilon+O\left(\epsilon^{2}\right)
$$

- Deform CFT with this operator:

$$
S_{C F T}+g \int d^{d} x O
$$

- Then

$$
\beta(g)=i \epsilon g+\pi C_{O O O} g^{2}
$$

beta-function is real for $\quad g=i u^{*}+v=\frac{-i \epsilon}{2 \pi} C_{O O O}+v$
and has the form

$$
\beta\left(i u^{*}+v\right)=-A \epsilon^{2}-B v^{2}
$$

## CPT around a complex CFT

$$
\begin{aligned}
& \beta\left(i u^{*}+v\right)=-A \epsilon^{2}-B v^{2} \\
& \beta_{\lambda}=\left(N_{f}-N_{f}^{*}\right)-\lambda^{2}
\end{aligned}
$$



- The "Toy model" describes a generic behavior near the merger point of two fixed points
 with the same symmetries, hence walking behavior is generic in this case (no need to turn on the operator).


## A calculable example: Potts model (in 2D)

- Generalization of Ising model in which spin field can take $Q$ values

$$
H\left[\left\{s_{i}\right\}\right]=-\beta \sum_{\langle i j\rangle} \delta_{s_{i}, s_{j}}
$$

- For $\mathrm{Q}<4$ there are two CFTs (critical and tricritical) that merge at $\mathrm{Q}=4 \longleftrightarrow$ conformal window.
- For $\mathrm{Q}>4$ there is no critical point, but a very weak 1 st order phase transition:

| $Q$ | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\xi$ | 2512.2 | 158.9 | 48.1 | 23.9 | 14.9 | 10.6 |

## A calculable example: Potts model (in 2D)

- We analytically continue CFT data to $\mathrm{Q}>4$ to get a complex CFT:



## A calculable example: Potts model (in 2D)

- We analytically continue CFT data to $\mathrm{Q}>4$ to get a complex CFT
- There is a close to marginal operator: $\varepsilon^{\prime}$

$$
\gamma=-\frac{2 i \epsilon}{\pi}-\frac{\epsilon^{2}}{\pi^{2}}, \quad C_{\varepsilon^{\prime} \varepsilon^{\prime} \varepsilon^{\prime}}=\frac{4}{\sqrt{3}}-\frac{2 i \sqrt{3}}{\pi} \epsilon, \quad \epsilon \equiv \sqrt{Q-4}
$$

- CPT with imaginary coupling:

$$
\begin{aligned}
& \beta_{u}^{2-\text { loop }}=\frac{\sqrt{3} \epsilon^{2}}{4 \pi^{3}}+\frac{4 \pi u^{2}}{\sqrt{3}}+\frac{u \epsilon^{2}}{2 \pi^{2}}+\frac{8 \pi^{2} u^{3}}{3} \\
& \xi_{\text {Potts }}=\exp \left(\int_{u_{I R}}^{u_{U V}} \frac{d u}{\beta_{u}\left(i v_{*}+u\right)}\right)=\exp \left(\frac{\pi^{2}}{\epsilon}\right) \sim\left(\frac{\Lambda_{U V}}{\Lambda_{I R}}\right)_{W T C} \\
& \hline \begin{array}{lrrrrrr} 
\\
\hline Q & 5 & 6 & 7 & 8 & 9 & 10 \\
\xi & 2512.2 & 158.9 & 48.1 & 23.9 & 14.9 & 10.6 \\
\hline
\end{array}
\end{aligned}
$$

A calculable example: Potts model (in 2D)
Drifting scaling dimensions:

$$
\begin{aligned}
& G_{\varphi}(r)=\langle\varphi(0) \varphi(r)\rangle \\
& \delta_{e}(r)=-\frac{1}{2} \frac{1}{G_{e}(r)} \frac{\partial G_{e}(r)}{\partial \ln r}=\operatorname{Re} \Delta_{\varphi}^{c}-\frac{\sqrt{3}}{2 \pi} C_{\varphi e \varepsilon}+\tan \frac{\varepsilon \ln r / r_{0}}{\pi}
\end{aligned}
$$



A calculable example: Potts model (in 2D)

Further Lattice checks, Ma and He 1811.11189

Entanglement entropy of a subregion (in the unitary) theory) scales as

$$
S(r) \sim \frac{1}{3} \operatorname{Rec} \cdot \ln r
$$

Other CM examples: Deconfined criticality
RG glow that appears in Néel-LBS transition can be described by bosonic QED 3 with $N=2$ flavors.
Monte Carlo suggests

- Sym. enhancement $S O(3) \times U(1) \rightarrow S O(5)$
- Very large correlation length

Bootstrap

- Excludes an SO(5) CFT with measured critical exponents
Resolution:
- Complex SO (5) CET and walking


## Conclusions:

- Walking occurs in the vicinity of a merger of CFts
- Complex CFTs can control real, unitary RG flows
- CPT is under control (iff $\Delta=d+i \epsilon$ )
- This knowledge can (and should) be used to study models of Walking Technicolor
- In particular, bootstrap constraints get partially alleviated
- Applications in Condensed Matter systems with weak 1st order phase transitions.
- What about the light dilaton?


## light dilaton?

- (pseudo-) Goldstone boson of spontaneously broken conformal symmetry.
- Was conjectured to be present in WTC models and used in various ways for Hierarchy problem.
- Walking = small explicit breaking of conformal symmetry
- Not a sufficient condition to have a light dilaton
- Instead, one needs a moduli space in a CFT for spontaneous breaking of scale invariance.
- Marginal operator $\neq$ moduli space
- Potts model doesn't have a dilaton in the walking regime.

Alternatives for the end of the conformal window If CATs with different symmetries cross they do not merge. They cross and exchange stability


Alternatives for the end of the conformal window
We only know that $x S B$ happens for small enough $x$ "experimentally. It could be that $B Z$ CFT exists for arbitrary small $x$, but $R G$ glows that we know miss it:


