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– Two well-known physical examples

– Weak 1st order phase transitions (CM)

– Walking technicolor (BSM)

• We propose that, it is the same RG phenomena, which, in some 
cases, can be described with the help of complex CFTs

Walking RG flows



– WTC is a way to get around some of the constraints on composite 
Higgs models. 

– Consider a strongly coupled sector which has approximate scale 
invariance in some range of energies                                , and 
assume Higgs is a part of this sector. 

– Then, in this range of energies, Higgs operator has some

– We couple it to the rest of the Standard Model: 

Walking RG flows for BSM
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– H gets a vev at the scale                        ,

– So Yukawas are given by  
 

– There are two contradicting requirements:

– 

– FCNC should be suppressed 
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– Way out is to have 

– But this leads to another potential problem: in unitary CFTs,  
 
so we are back to fine-tuning problem due to a relevant singlet 
operator.

Walking RG flows for phenomenology
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FIG. 49 Viable regions in the {�H , �S} plane for confor-
mal technicolor models in the flavor-generic (red) and flavor-
optimistic (cross-hatched green) cases, superimposed with the
SO(4) bound. Regions for no tuning, 10% and 1% tuning
are shown in successively lighter shades of each color, with
the largest region corresponding to 1% tuning in each case.
Flavor-generic models are ruled out (Poland et al., 2012).

slightly deviate from 1 without violating flavor con-
straints, and to allow �S somewhat below 4 at the price
of some moderate tuning (Luty and Okui, 2006; Rattazzi
et al., 2008; Rychkov, 2011). Although this freedom helps
to alleviate bootstrap constraints, some tension remains.
Fig. 49 from (Poland et al., 2012) shows the regions of
{�H , �S} allowed under di↵erent degrees of tuning and
di↵erent assumptions about the structure of the flavor
sector. The conclusion is that compatibility with the
bootstrap bound can be achieved only under optimistic
flavor assumptions and with a moderate tuning.

An additional phenomenological constraint on confor-
mal technicolor comes from the existence of the Higgs
boson particle. While a SM-like Higgs boson may appear
in conformal technicolor as a resonance of the strong dy-
namics at the electroweak scale associated with breaking
of conformal invariance (Luty and Okui, 2006), it is ex-
pected to be somewhat heavier than the experimentally
observed value 125 GeV, and to have some deviations in
its coupling to the top quark, which were not seen so far.
This further reduces the likelihood that the conformal
technicolor scenario is realized in nature. Still, the above
analysis, performed prior to the Higgs boson discovery,
remains a beautiful example of how theoretical investiga-
tions can lead to first-principles constraints on strongly
coupled scenarios for particle physics beyond the SM.

C. Constraints on the QCD4 conformal window

Perhaps the most famous class of unitary 4d CFTs
are the IR fixed points of asymptotically free nonabelian
gauge theories coupled to massless fermions, often re-
ferred to as Banks-Zaks fixed points (Banks and Zaks,
1982) though they were first considered by Caswell (1974)

and Belavin and Migdal (1974). Depending on the num-
ber of fermion representations N , this IR conformal be-
havior is realized in an interval of N called the “con-
formal window”. These CFTs are of great interest the-
oretically, and historically have also been discussed be-
cause of their relation to walking technicolor models of
electroweak symmetry breaking.73 Close to the upper
end of the conformal window these theories can be stud-
ied perturbatively, see e.g. (Ryttov and Shrock, 2017).
They have also been studied actively using lattice Monte
Carlo techniques; see (Nogradi and Patella, 2016; Svetit-
sky, 2017) for recent reviews.

Here we will describe what the bootstrap so far has to
say about these CFTs. For concreteness we will restrict
to a QCD-like theory with N massless Dirac fermions in
the fundamental representation (⇤) of an SU(Nc) gauge
group, with Nc > 3. The global symmetry G of this
theory is

G = U(1)V ⇥ H , H = SU(N)L ⇥ SU(N)R , (125)

where H rotates left and right Weyl components  L and
 R of the fermions separately, while the vectorial U(1)V

rotates them simultaneously; its axial counterpart is in-
stead anomalous. The theory also preserves P and C,
which interchange left and right fermions.

If an IR fixed point is reached, the above global sym-
metry remains unbroken. This implies that all opera-
tors of the would-be CFT must organize in irreducible
representation of G. We will be interested in particular
in gauge-invariant scalar operators (“mesons”) which are
fermion bilinears:

�k̄
i =  ̄k̄

L Ri, (126)

which transform in ⇤ ⇥ ⇤ under H. The mesons are
not charged under the U(1)V , which will play no role
below. Parity maps � into its complex conjugate �̄.
The scaling dimension of � is an interesting observable,
often expressed in terms of the anomalous dimension
�� = 3 � ��. See Giedt (2016) for a review of lat-
tice measurements of ��. The bootstrap will give lower
bounds on ��, translating into upper bounds on ��.

Nakayama (2016b) carried out a bootstrap analysis of
the 4pt function h���̄�̄i using the global symmetry H.74

Of particular interest is an upper bound on the dimension
of the lowest scalar in the OPE � ⇥ �̄ which is a singlet
under H, shown in Fig. 50 for N = 8. Such scalars are
parity even, with an example being Tr[Fµ⌫Fµ⌫ ], where

73 Walking behavior is expected to be realized for N just below the
lower end of the conformal window (Kaplan et al., 2009), but
detailed discussion of this physics is beyond our scope.

74 In his notation � was a bifundamental of H under a di↵erent
(but equivalent) convention for the transformation of left-handed
fermions.

Poland et al, 2012



– Two ways of producing slow RG flows

Slow RG flows

“Mild Tuning” 

(Deformed CFT)

“Walking” 

(Vicinity of a CFT merger)



– Conformal Technicolor (Luty-Okui ’04)  
 
 

– Scale invariance is broken at  

–               (symmetry)

–                (“Mild” tuning)

–                Asymptotic freedom is a particular case of Mild tuning
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– Consider QCD with Nf flavors: 
 
 
 
 
 
 
 
 

–What happens at the ends of the conformal window?

Walking (Ex: Conformal window)
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– What happens at the ends of the conformal window?

– A fixed point cannot just disappear

Walking (Conformal window)
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– Let us discuss the vicinity of  
the annihilation point:  

– Consider a “toy model”  
 
 

– For                      there are two fixed points, but what happens for   
                  - for which walking has been observed on the lattice? 
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– There are no real CFTs, but there are two complex solutions!  
 

– Note that (the real) RG flow is walking and there is an 
exponentially large hierarchy of scales:  
 
 

– Walking occurs in the vicinity of a generic CFT merger point

Walking (Toy model)
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– Our main point is that these complex CFTs are still very useful to 
describe the real unitary RG flow, as long as imaginary parts are 
small.

– We can do Conformal Perturbation theory around      or   
 
 

Walking RG flows
� = ±i
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2d Potts model y < 0 corresponds to Q > 4, and even though walking is supposed to hold for
Q � 4 ⌧ 1, there are signs that the naive expansion around Q = 4 works reasonably well up to
Q ⇠ 10. Why is that?

2.2.1 Introducing complex CFTs

To achieve some peace with the above puzzles, let us reconsider the fate of the fixed points at
y < 0. Of course the fixed points don’t just disappear completely, but they go to the complex
plane, see Fig. 2. While this is often said, as far as we know until now there has not been any
concrete attempt to assign physical meaning to these complex fixed points. This is precisely what
we would like to do. We posit that these fixed points should be viewed as nonperturbatively
defined non-unitary CFTs of a novel type, which we call complex CFTs. To the pair of complex
conjugate fixed points there will correspond a pair of complex conjugate CFTs, called C and C̄.

Figure 2: Structure of RG flow in the complex coupling plane, in the approximation of dropping
the higher order terms in (2.3). Notice that including those terms will generically change the nature
of RG flow trajectories around C and C̄, since the RG eigenvalue will then acquire a small real part
O(y2), making the flow spirally in- or unwinding. See section ?? for an example.fig:fig2

In this paper we will argue that these complex CFTs control the walking flow in the same way
as the CFT appearing in (2.1) controls the tuned flow. It is around them that one should more
properly expand the flow, and not around the CFT at y = 0. Doing so we readily resolve the first
puzzle, since C and C̄, living at the same value of the y parameter, have the same symmetry as the
physical RG flow along the real axis.

Having recourse to C and C̄ also suggests a resolution of the second puzzle. For small y > 0 let
us compute the fixed point dimension � of the CFT operator O� to which � couples. The fixed
points being at �⇤ = ±i

p
y, we get similarly to (2.4)

� = d+ �0(�⇤) = d± 2i
p
y +O(y2) . (2.7) eq:delta_y

Notice that the dimension is complex (and complex conjugate for C and C̄), which will be a
hallmark of complex CFTs. Notice as well that � is close to marginality, with the leading deviation
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CPT around a complex CFT

– Imagine a complex CFT with an operator of dimension  

– Deform CFT with this operator: 

– Then  
 
beta-function is real for  
 
and has the form  
 

� = d+ i✏+O(✏2)
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CPT around a complex CFT

– The “Toy model” describes a  
 generic behavior near the merger  
 point of two fixed points  
 with the same symmetries, hence walking  
 behavior is generic in this case (no need to turn on the operator).  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A calculable example: Potts model (in 2D)

– Generalization of Ising model in which spin field can take Q values  
 

– For Q<4 there are two CFTs (critical and tricritical) that merge at  
Q=4                  conformal window.

– For Q>4 there is no critical point, but a very weak 1st order phase 
transition: 
 
 

3 Walking in statistical physics: two-dimensional Potts model

Although we borrowed the term ‘walking’ from the physics of 4d gauge theories, historically the
first example of walking has been observed in the 2d Q-state Potts model. This model is one of
best-known models of statistical physics, but it’s not as widely known to high energy physicists as
it deserves. We therefore start with a mini-review. Generalizations to d > 2 will be discussed in
section A.3.

3.1 Spin and cluster definitions

Consider a square lattice in 2d (other lattices are also possible). It will be important that the
Potts model7 has two lattice definitions, as a model of (a) random spins living on lattice sites, or
(b) random clusters, that is connected sets of lattice bonds. The two definitions agree for integer
Q, with the second definition providing an analytic continuation to non-integer Q’s.

In the spin definition, we put on every lattice site i a discrete variable si 2 {1, 2, . . . , Q}. The
partition function is the sum over spin configurations:

Zspin =
X

{si}

e�H[{si}] , (3.1)

with the lattice Hamiltonian (we include � = 1/T into the Hamiltonian) being the sum of nearest-
neighbor interaction terms which energetically prefer for the spins to be identical (this is called
the ferromagnetic case):

H[{si}] = ��
X

hiji

�si,sj . (3.2) pottsH

For Q = 2 this reduces, up to a constant shift, to the Ising model Hamiltonian. This model has a
discrete global permutation group symmetry SQ.

Let us now discuss the cluster definition of the Potts model, due to Fortuin and Kasteleyn [12].
On the same lattice we consider random subsets of lattice bonds X. The probabilistic weight for
a given subset X to occur is, unlike for spins, not given in terms of a local Hamiltonian, but is
defined as

w(X) = vb(X)Qc(X) , v = e� � 1 , (3.3) eq:wGamma

where b(X) is the total number of bonds in X, and c(X) is the total number of clusters—connected
components in the graph which has all lattice sites as vertices and bonds from X as edges. Isolated
sites also count as clusters (see Fig. 3). Notice that disconnected lattice sites also count as clusters.

The factor vb(X) in (3.3) simply means that each lattice bond is included or not into X with
independent relative probability v : 1. This basic factorized probability distribution is then
modified by the factor Qc(X). The number of clusters is a nonlocal characteristic of X, so this
definition is nonlocal (at least at first appearance). The partition function is then given by:

Zcluster =
X

X

w(X), (3.4) FK

9

Q 5 6 7 8 9 10
⇠ 2512.2 158.9 48.1 23.9 14.9 10.6

Table 1: 2d Potts model correlation length on the square lattice, at the first order phase transition
[17], reported e.g. in [18].tab:xiPotts

At the phase transition of a lattice model, having the correlation length much larger that the
lattice spacing is an example of a hierarchy, in the sense of section 2. This was explained 40 years
ago by Nauenberg, Scalapino, and Cardy [6, 7] as a consequence of walking, in what was the first
evocation of this mechanism in physics.10

Let us review this explanation and the evidence in its favor. The key equation is (2.3).
Parameter y is assumed a monotonic function of Q, with approximately linear dependence near
� = 0:

y = c � +O(�2) . (3.9) eq:ydelta

The constant c must be positive, so that y > 0 corresponds to Q > Qc. The value of c can be
readily fixed by demanding that the hierarchy (2.6) reproduce the exactly known correlation length
asymptotics (3.8); we get11

c = 1/⇡2 . (3.10) eq:cex

Consider then what happens for Q < Qc. It is convenient to enlarge the coupling space of the
Potts model by considering the dilute Potts model. In this model the Potts spins or clusters live
only on a part of the lattice, while the rest is occupied by vacancies.12 One can also think that
vacancies are generated by RG transformations and represent disordered spin configurations [24].

[SR: Why can we apply RG to potts model for non-integer Q]

Now, it is known that the dilute Potts model has for Q < Qc two fixed points. One of them
is the same as the critical point of the usual non-dilute Potts model. The other fixed point is
tricritical, obtained by tuning both the temperature and the chemical potential for the vacancies.
Ref. [24] first found these fixed points by means of an approximate RG transformation, and showed
that they annihilate at Q = Qc. This picture agrees with section 2.2, which predicted two fixed
points at y < 0 annihilating at y = 0 (see Fig. 4 in the next section). We therefore identify the
more stable � = �� fixed point as the critical and � = �+ as the tricritical Potts model.

In fact, much is known about the CFTs describing these fixed points, and this can be used
to further check and complete the walking RG picture.13 Here we will use the two lowest singlet
operators " and "0, referred to as the leading and subleading temperature perturbations. Their

10They did not actually use the term ‘walking’. It seems that the mechanism does not have a standard name in
statistical physics. Sometimes it is referred to as ‘pseudo-critical behavior’ [19, 20, 18].

11This step was not done in [6, 7] because the correlation length asymptotics was not known at the time. They
arrived at the same value of c via the exactly known operator dimension and the latent heat, see below.

12This is also called the Blume-Emery-Gi�ths model [21, 22]. For a cluster definition applicable at non-integer
Q see [23].

13The operator spectrum of both CFTs is fully known, some of it via exact lattice solution à la Baxter, and the
rest via Coulomb gas [25]. The OPE coe�cients are known fully for Q = 2, 3, 4 and partially for other Q’s. We will
review and use this information in section 7.
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A calculable example: Potts model (in 2D)

– We analytically continue CFT data to Q>4 to get a complex CFT:  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Figure 7: Real parts of of dimensions of light scalar operators as functions of Q. Singlet operators
are in green, other multiplicities are marked on the plot. Dashed lines correspond to tricritical models
for Q < 4 and for Q = Qc = 4 branches merge as described in the text. � = 2 is the marginality line.
(r, s) numbers are indicated for energy and spin operators, as well as for �1,3 operator which induces
the flow between the branches. [VG: do we want to keep the plot with imaginary parts of dimensions
as well??] [BZ: write �, �0, ✏ and so on]fig:dimRe

• Vanishing operators [BZ: only name I could think of]: some operator appear to be
part of the theory, but on a more careful analysis it can be seen that their multiplicity is
zero. Take for example the operator O0,±1/2: it appears as the term m = ±1 in Zc[g, 1/2]

and as M = 1, P = 0 term in the second sum in Ẑ. However, it turns out that this operator
is degenerate with the operator Oe0�2,0, originating from the P = �1 term of the first sum
in Ẑ, due to (7.4). The total multiplicity of this operator is then

� (Q� 1) + 2 cos ⇡e0 + 1 = 0 (7.15)

and so it is actually not present in the spectrum for all Q’s. [VG: eta-function terms]

• Higher representations: one more interesting light operator is O0,1, from the P = 0,
M = 2, N = 1 term in the second sum of Ẑ. Its dimension is given by g

2 + c�1
12 and it is

relevant for the tricritical branch when Q < 4, and exactly marginal at Q = 4. According to
(7.12) the multiplicity is

cos ⇡e0 + cos 2⇡e0 =
Q(Q� 3)

2
. (7.16) mult
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A calculable example: Potts model (in 2D)
– We analytically continue CFT data to Q>4 to get a complex CFT

– There is a close to marginal operator:  
 

– CPT with imaginary coupling:  
 
 

where the OPE coe�cient is given by

C"0"0"0 =
4
p
3
+O(✏) (8.9) Cepepep

Let us split g into real and imaginary parts g = u+ iv and introduce

v⇤ =

p
3✏

4⇡2
(8.10) vs

We observe that for v = 2v⇤, u = 0 the beta function is equal to zero. This fixed point corresponds
to CFT: dimension of "0 at that point is given by

2 +
d�

dg

����
g=2v⇤

= 2 + � + 2[V G :⇡]v⇤C"0"0"0 = 2� �, (8.11)

which is the complex conjugate of the value of �"0 in the CFT, as anticipated.

We also notice that for v = v⇤ and any u the beta function is real:

�u(iv⇤ + u) =

p
3✏2

4⇡3
+

4⇡
p
3
u2 (8.12)

For small ✏, this is the walking beta-function of the form (??), from which, in particular, we can
obtain the correlation length in the Q > Qc Potts models:

⇠Potts = exp

✓Z
uUV

uIR

du

�u(iv⇤ + u)

◆
= exp

✓
⇡2

✏

◆
= exp

✓
⇡2

p
Q�Qc

◆
(8.13)

where we assumed that both UV and IR values of the coupling constant are large.

In the rest of this section we perform some more detailed checks of our proposal and give
example computations of observables in the real Q > Qc Potts model.

8.1 Two-loop beta function

Let us check if the results above continue to hold at the two-loop order. The beta function takes
the following form:

�2�loop = �g + ⇡C"0"0"0g
2
�

⇡g3

3
I. (8.14)

We now need the next to leading order expansion for � and C"0"0"0 :

� = �
2i✏

⇡
�

✏2

⇡2
, C"0"0"0 =

4
p
3
�

2i
p
3

⇡
✏, (8.15)

The two loop term I originates from the “triple” OPE of the field "0: when computing perturbative
correction a simple pole in � arises when three insertion of the field "0 are close together. Naively, it’s
given by the integrated four point function Inaive =

R
d2zh"0(0)"0(z)"0(1)"0(1)i. However, one has to
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be careful and subtract extra divergences (double poles in �) which are related to the ordinary OPE
of the field "0 with itself. See [41] for more details and [48] for di↵erent methods on how to compute
this integral26. Taking into account all the subtractions, we find I = �8⇡. This result was obtained
in [45]: we have numerically checked that, given the four point function h"0"0"0"0i in appendix C of
the same paper, the result of the integral is correct. At this order the value of the critical coupling
(8.10) doesn’t change and we observe that for g = 2v⇤, �"0(2v⇤) = 2 + 2i✏

⇡
�

✏
2

⇡2 = 2 � �̄ while for
g = v⇤ beta-function is real and given by

�2�loop

u
=

p
3✏2

4⇡3
+

4⇡u2

p
3

+
u✏2

2⇡2
+

8⇡2u3

3
. (8.16)

As we see the two-loop results are also consistent with our proposal. Moreover, we observe the
perturbation theory for real observables contains expansion in even powers of ✏. By computing,
for example, the e↵ective scaling dimension of ✏0 on the real line at u = 0

�eff

"0 = �0(iv⇤) =
✏2

2⇡2
, (8.17) expParam

we see that the actual expansion parameter is ⇠ ✏2/⇡2 = (Q�Qc)/⇡2. This explains why weakness
of the first order phase transition persists for relatively large Q [].

8.2 Energy operator " and drifting exponents

Next we consider some operators other than "0. We begin with the energy operator ". Its dimension
at the fixed point is

�0
"
=

1

2
�

3i✏

4⇡
�

3✏2

8⇡2
+ . . . , (8.18)

while at the two-loop order in CPT it is given by27

�"(g) = �0
"
+ 2⇡C"0""g � ⇡Jg2. (8.19)

Here J is the integral of the four point function, Jnaive =
R
d2xh"(0)"0(x)"0(1)"(1)i, with extra

divergences carefully subtracted [41]. Using

C"""0 =

p
3

2
�

i
p
3✏

4⇡
(8.20) Ceeep

and J = �⇡, that was also calculated in [45], we see that this operator also goes to its conjugate
for g = 2v⇤, providing yet another consistency check.

Since the real Potts theory is approximately scale invariant for a large range of scales we expect
that the correlation functions exhibit approximate power-law scaling. To quantify this idea, let

26[48] considers a flow driven by an operator with a vanishing three point function, therefore minor modifications
are needed in this case.

27The g
2 term of the anomalous dimension is scheme dependent, meaning that a shift g ! g+↵g

2 would change
it. The result we are presenting is computed in the minimal subtraction scheme. However, we will be interested in
the two point function of the operator, which is physical and does not depend on the scheme.
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where the OPE coe�cient is given by
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Let us split g into real and imaginary parts g = u+ iv and introduce

v⇤ =
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We observe that for v = 2v⇤, u = 0 the beta function is equal to zero. This fixed point corresponds
to CFT: dimension of "0 at that point is given by
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which is the complex conjugate of the value of �"0 in the CFT, as anticipated.

We also notice that for v = v⇤ and any u the beta function is real:

�u(iv⇤ + u) =
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For small ✏, this is the walking beta-function of the form (??), from which, in particular, we can
obtain the correlation length in the Q > Qc Potts models:

⇠Potts = exp

✓Z
uUV

uIR

du

�u(iv⇤ + u)

◆
= exp

✓
⇡2

✏

◆
= exp

✓
⇡2

p
Q�Qc

◆
(8.13)

where we assumed that both UV and IR values of the coupling constant are large.

In the rest of this section we perform some more detailed checks of our proposal and give
example computations of observables in the real Q > Qc Potts model.

8.1 Two-loop beta function

Let us check if the results above continue to hold at the two-loop order. The beta function takes
the following form:

�2�loop = �g + ⇡C"0"0"0g
2
�

⇡g3

3
I. (8.14)

We now need the next to leading order expansion for � and C"0"0"0 :

� = �
2i✏

⇡
�

✏2

⇡2
, C"0"0"0 =

4
p
3
�

2i
p
3

⇡
✏, (8.15)

The two loop term I originates from the “triple” OPE of the field "0: when computing perturbative
correction a simple pole in � arises when three insertion of the field "0 are close together. Naively, it’s
given by the integrated four point function Inaive =

R
d2zh"0(0)"0(z)"0(1)"0(1)i. However, one has to
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Q 5 6 7 8 9 10
⇠ 2512.2 158.9 48.1 23.9 14.9 10.6

Table 1: 2d Potts model correlation length on the square lattice, at the first order phase transition
[17], reported e.g. in [18].tab:xiPotts

At the phase transition of a lattice model, having the correlation length much larger that the
lattice spacing is an example of a hierarchy, in the sense of section 2. This was explained 40 years
ago by Nauenberg, Scalapino, and Cardy [6, 7] as a consequence of walking, in what was the first
evocation of this mechanism in physics.10

Let us review this explanation and the evidence in its favor. The key equation is (2.3).
Parameter y is assumed a monotonic function of Q, with approximately linear dependence near
� = 0:

y = c � +O(�2) . (3.9) eq:ydelta

The constant c must be positive, so that y > 0 corresponds to Q > Qc. The value of c can be
readily fixed by demanding that the hierarchy (2.6) reproduce the exactly known correlation length
asymptotics (3.8); we get11

c = 1/⇡2 . (3.10) eq:cex

Consider then what happens for Q < Qc. It is convenient to enlarge the coupling space of the
Potts model by considering the dilute Potts model. In this model the Potts spins or clusters live
only on a part of the lattice, while the rest is occupied by vacancies.12 One can also think that
vacancies are generated by RG transformations and represent disordered spin configurations [24].

[SR: Why can we apply RG to potts model for non-integer Q]

Now, it is known that the dilute Potts model has for Q < Qc two fixed points. One of them
is the same as the critical point of the usual non-dilute Potts model. The other fixed point is
tricritical, obtained by tuning both the temperature and the chemical potential for the vacancies.
Ref. [24] first found these fixed points by means of an approximate RG transformation, and showed
that they annihilate at Q = Qc. This picture agrees with section 2.2, which predicted two fixed
points at y < 0 annihilating at y = 0 (see Fig. 4 in the next section). We therefore identify the
more stable � = �� fixed point as the critical and � = �+ as the tricritical Potts model.

In fact, much is known about the CFTs describing these fixed points, and this can be used
to further check and complete the walking RG picture.13 Here we will use the two lowest singlet
operators " and "0, referred to as the leading and subleading temperature perturbations. Their

10They did not actually use the term ‘walking’. It seems that the mechanism does not have a standard name in
statistical physics. Sometimes it is referred to as ‘pseudo-critical behavior’ [19, 20, 18].

11This step was not done in [6, 7] because the correlation length asymptotics was not known at the time. They
arrived at the same value of c via the exactly known operator dimension and the latent heat, see below.

12This is also called the Blume-Emery-Gi�ths model [21, 22]. For a cluster definition applicable at non-integer
Q see [23].

13The operator spectrum of both CFTs is fully known, some of it via exact lattice solution à la Baxter, and the
rest via Coulomb gas [25]. The OPE coe�cients are known fully for Q = 2, 3, 4 and partially for other Q’s. We will
review and use this information in section 7.
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A calculable example: Potts model (in 2D)
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A calculable example: Potts model (in 2D)
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Other CM examples: Deconfined criticality
RG flow that appears in Neel - UBS transition

can be described by bosonic QED z with

TN=3 flavors .

Monte Carlo suggests
- - - -

- Sym .

enhancement SOG ) x Uk ) → SOC 5)
- Very large correlation length

Bootstrap
-

- Excludes an 5015 ) CFT with measured
critical exponents

Resolution :
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- Complex SoCs ) CET and walking .



Conclusions:
• Walking occurs in the vicinity of a merger of CFts
•  Complex CFTs can control real, unitary RG flows
•  CPT is under control   (iff                    )
•  This knowledge can (and should) be used to study models 

of Walking Technicolor  
• In particular, bootstrap constraints get partially alleviated
• Applications in Condensed Matter systems with weak 1st 

order phase transitions.
• What about the light dilaton? 
 

� = d+ i✏

- -



light dilaton?
• (pseudo-) Goldstone boson of spontaneously broken conformal 

symmetry.
• Was conjectured to be present in WTC models and used in 

various ways for Hierarchy problem.
• Walking = small explicit breaking of conformal symmetry
• Not a sufficient condition to have a light dilaton
• Instead, one needs a moduli space in a CFT for spontaneous 

breaking of scale invariance.

• Marginal operator      moduli space
• Potts model doesn’t have a dilaton in the walking regime.  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Alternatives for the end of the conformal window
If CRTs with different symmetries cross

they denote merge . They cross and exchange
stability

CFT with a

→ larger symmetry .
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Alternatives for the end of the conformal window
We only know that XSB happens for small

enough x
"

experimentally .

It could be

that BZ CFT es for arbitrary small K
,

but RG glows that we know miss it :
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