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Motivation
Conformal field theories are characterized by dimensionless 
numbers like critical exponents or conformal dimensions, which 
are usually not easy to compute except in a few cases.

Use a large conserved charge “Q” sectors to identify a small parameter.

Then, use Effective Field Theory ideas and “radial” quantization 
to solve for the conformal dimensions as a perturbative expansion.
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In O(N) models conformal dimensions emerge as an 
expansion of the form

DQ = c3/2Q
3/2 + c1/2Q

1/2 + c0 +O(1/Q1/2)
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Challenge: Computing         using Monte Carlo methods 
suffers from severe signal to noise ratio problems with 
conventional methods for large Q.

DQ
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Simplest Example: O(2) model at the 3d Wilson-Fisher fixed point
*
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For large Q, we have to average quantities of unit magnitude to 
obtain small numbers! 

Things can be even more complicated with other models!

Non-trivial Example: O(4) model at the 3d Wilson-Fisher fixed point. 

SO(4) ⇠ SU(2)⇥ SU(2)
<latexit sha1_base64="U4rSVBT43VvXL49hrFnM/tIj4wA="></latexit>

(qL, qR)
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Representations: 

*
O

qL,qR
x (O†)qL,qRy

+
⇠
 

1

|x � y |

!DqL ,qR

<latexit sha1_base64="7Msw8LzrJSuHKiedn3MWTooO3sE="></latexit>

Hence we now need to compute





New ideas for studying CFTs using Monte Carlo Methods!



New ideas for studying CFTs using Monte Carlo Methods!

Worldline Formulations



New ideas for studying CFTs using Monte Carlo Methods!

Worldline Formulations

Qubit Formulations





The O(2) Model
Banerjee, SC, Orlando PRL 120, (2016) 061603
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The worldline approach allows us to efficiently create and annihilate 
charges at various space-time separations using worm algorithms.

The O(2) Model
Banerjee, SC, Orlando PRL 120, (2016) 061603
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Scaling:

Worm algorithms can compute

ZQ/ZQ�1 ⇠ 1/L�Q

�Q = DQ � DQ�1
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worm algorithm based on the worldline representation [30].
However, in order to compute the conformal dimension
DðQÞ in R3 we need to compute the two-point correlation
function CQðrÞ of charge Q fields on a large lattice of size
L, which is expected to decay as a power law for large
separations r ≪ L at the critical point,

CQðrÞ ¼ hexpðiQθrÞ expð−iQθ0Þi∼
aðQÞ
jrj2DðQÞ : ð6Þ

Fitting the data to this form we can in principle extract
DðQÞ and thus verify Eq. (1). Note that for Q ¼ 1, it
reduces to the standard two-point correlation function,
which is used to extract the critical exponent η through
the relation C1ðrÞ ¼ GðrÞ ∝1=rd−2þη. For Q ¼ 2, 3, 4, the
corresponding conformal dimensions have also been com-
puted earlier using different methods, and the results are
summarized in Table I. Unfortunately, calculations ofDðQÞ
for higher values of Q do not exist and, hence, the relation
(1) remains unconfirmed.
It is difficult to measure DðQÞ for large values of Q

through a Monte Carlo method due to severe signal-to-
noise ratio problems in the Monte Carlo calculations. With
the Wolff cluster algorithm it is difficult to average numbers
of order 1 to compute a small value of CQðrÞ at large
separations. In contrast, in the worm algorithm, it is
difficult to correctly build the worldline configurations
that contribute to the correlation function in the presence of
charged sourcesQ and−Q separated by a large distance. In
this case the severe signal-to-noise ratio problem emerges
as an overlap problem between the vacuum ensemble and
the one containing the sources. In order to overcome this
problem we have designed an algorithm to efficiently
compute the ratio

RðL=2Þ ¼
CQðr ¼ L=2Þ
CQ−1ðr ¼ L=2Þ

ð7Þ

on cubic lattices of side L for 8 ≤L=a≤120 at the critical
point βc (the details of our algorithm can be found in the
Supplemental Material [36]). Using RðL=2Þ it is easy to

extract the difference ΔðQÞ ¼ DðQÞ−DðQ−1Þ using
the relation RðLÞ∼1=L2ΔðQÞ. The accuracy with which
we are able to compute the ratio RðL=2Þ for various
values of Q can be seen in Fig. 2. Once the differences
ΔðQÞ are known, we can also extract DðQÞ by setting
DðQ ¼ 0Þ ¼ 0. Our estimates of both ΔðQÞ and DðQÞ
using Monte Carlo calculations, are given in Table II. It is

TABLE I. Conformal dimensionsDðQÞ obtained previously by
other methods forQ ≤4. Field theory results in 4−ϵ dimensions
at five loops are in the second column, six-loop results at d ¼ 3
are in the third column ([31] for Q ¼ 2, in [32] for Q ¼ 3 and in
[33] for Q ¼ 4), previous MC results are in the fourth column
[34], and bootstrap results are in the fifth column [35].

Q ϵ5 λ6 MC Bootstrap

1 0.518(1) % % % 0.5190(1) 0.5190(1)
2 1.234(3) 1.23(2) 1.236(1) 1.236(3)
3 2.10(1) 2.10(1) 2.108(2) % % %
4 3.114(4) 3.103(8) 3.108(6) % % %
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FIG. 2. The figures (top and bottom) show the quantity RðL=2Þ
for different lattice sizes L=a¼ 8;…; 120 and differentQ values.
The straight line on a log-log plot is indicative of the power law
behavior, and the slope gives the difference of the conformal
dimensions 2ΔðQÞ. Note that there is no visible signal-to-noise
problem in these correlators.

TABLE II. Results for the conformal dimensions ΔðQÞ and
DðQÞ defined through (6). Fit systematics are discussed in the
Supplemental Material [36]. While our results for Q < 4 are in
good agreement with previous results as seen in Table I, there is a
slight deviation for Q ¼ 4.

Q ΔðQÞ DðQÞ Q ΔðQÞ DðQÞ
1 0.516(3) 0.516(3) 7 1.332(5) 6.841(8)
2 0.722(4) 1.238(5) 8 1.437(4) 8.278(9)
3 0.878(4) 2.116(6) 9 1.518(2) 9.796(9)
4 1.012(2) 3.128(6) 10 1.603(2) 11.399(10)
5 1.137(2) 4.265(6) 11 1.678(5) 13.077(11)
6 1.243(3) 5.509(7) 12 1.748(5) 14.825(12)
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of order 1 to compute a small value of CQðrÞ at large
separations. In contrast, in the worm algorithm, it is
difficult to correctly build the worldline configurations
that contribute to the correlation function in the presence of
charged sourcesQ and−Q separated by a large distance. In
this case the severe signal-to-noise ratio problem emerges
as an overlap problem between the vacuum ensemble and
the one containing the sources. In order to overcome this
problem we have designed an algorithm to efficiently
compute the ratio

RðL=2Þ ¼
CQðr ¼ L=2Þ
CQ−1ðr ¼ L=2Þ
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on cubic lattices of side L for 8 ≤L=a≤120 at the critical
point βc (the details of our algorithm can be found in the
Supplemental Material [36]). Using RðL=2Þ it is easy to

extract the difference ΔðQÞ ¼ DðQÞ−DðQ−1Þ using
the relation RðLÞ∼1=L2ΔðQÞ. The accuracy with which
we are able to compute the ratio RðL=2Þ for various
values of Q can be seen in Fig. 2. Once the differences
ΔðQÞ are known, we can also extract DðQÞ by setting
DðQ ¼ 0Þ ¼ 0. Our estimates of both ΔðQÞ and DðQÞ
using Monte Carlo calculations, are given in Table II. It is

TABLE I. Conformal dimensionsDðQÞ obtained previously by
other methods forQ ≤4. Field theory results in 4−ϵ dimensions
at five loops are in the second column, six-loop results at d ¼ 3
are in the third column ([31] for Q ¼ 2, in [32] for Q ¼ 3 and in
[33] for Q ¼ 4), previous MC results are in the fourth column
[34], and bootstrap results are in the fifth column [35].

Q ϵ5 λ6 MC Bootstrap

1 0.518(1) % % % 0.5190(1) 0.5190(1)
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FIG. 2. The figures (top and bottom) show the quantity RðL=2Þ
for different lattice sizes L=a¼ 8;…; 120 and differentQ values.
The straight line on a log-log plot is indicative of the power law
behavior, and the slope gives the difference of the conformal
dimensions 2ΔðQÞ. Note that there is no visible signal-to-noise
problem in these correlators.

TABLE II. Results for the conformal dimensions ΔðQÞ and
DðQÞ defined through (6). Fit systematics are discussed in the
Supplemental Material [36]. While our results for Q < 4 are in
good agreement with previous results as seen in Table I, there is a
slight deviation for Q ¼ 4.

Q ΔðQÞ DðQÞ Q ΔðQÞ DðQÞ
1 0.516(3) 0.516(3) 7 1.332(5) 6.841(8)
2 0.722(4) 1.238(5) 8 1.437(4) 8.278(9)
3 0.878(4) 2.116(6) 9 1.518(2) 9.796(9)
4 1.012(2) 3.128(6) 10 1.603(2) 11.399(10)
5 1.137(2) 4.265(6) 11 1.678(5) 13.077(11)
6 1.243(3) 5.509(7) 12 1.748(5) 14.825(12)
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slight deviation for Q ¼ 4.
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which is used to extract the critical exponent η through
the relation C1ðrÞ ¼ GðrÞ ∝1=rd−2þη. For Q ¼ 2, 3, 4, the
corresponding conformal dimensions have also been com-
puted earlier using different methods, and the results are
summarized in Table I. Unfortunately, calculations ofDðQÞ
for higher values of Q do not exist and, hence, the relation
(1) remains unconfirmed.
It is difficult to measure DðQÞ for large values of Q

through a Monte Carlo method due to severe signal-to-
noise ratio problems in the Monte Carlo calculations. With
the Wolff cluster algorithm it is difficult to average numbers
of order 1 to compute a small value of CQðrÞ at large
separations. In contrast, in the worm algorithm, it is
difficult to correctly build the worldline configurations
that contribute to the correlation function in the presence of
charged sourcesQ and−Q separated by a large distance. In
this case the severe signal-to-noise ratio problem emerges
as an overlap problem between the vacuum ensemble and
the one containing the sources. In order to overcome this
problem we have designed an algorithm to efficiently
compute the ratio
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on cubic lattices of side L for 8 ≤L=a≤120 at the critical
point βc (the details of our algorithm can be found in the
Supplemental Material [36]). Using RðL=2Þ it is easy to

extract the difference ΔðQÞ ¼ DðQÞ−DðQ−1Þ using
the relation RðLÞ∼1=L2ΔðQÞ. The accuracy with which
we are able to compute the ratio RðL=2Þ for various
values of Q can be seen in Fig. 2. Once the differences
ΔðQÞ are known, we can also extract DðQÞ by setting
DðQ ¼ 0Þ ¼ 0. Our estimates of both ΔðQÞ and DðQÞ
using Monte Carlo calculations, are given in Table II. It is

TABLE I. Conformal dimensionsDðQÞ obtained previously by
other methods forQ ≤4. Field theory results in 4−ϵ dimensions
at five loops are in the second column, six-loop results at d ¼ 3
are in the third column ([31] for Q ¼ 2, in [32] for Q ¼ 3 and in
[33] for Q ¼ 4), previous MC results are in the fourth column
[34], and bootstrap results are in the fifth column [35].
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for different lattice sizes L=a¼ 8;…; 120 and differentQ values.
The straight line on a log-log plot is indicative of the power law
behavior, and the slope gives the difference of the conformal
dimensions 2ΔðQÞ. Note that there is no visible signal-to-noise
problem in these correlators.

TABLE II. Results for the conformal dimensions ΔðQÞ and
DðQÞ defined through (6). Fit systematics are discussed in the
Supplemental Material [36]. While our results for Q < 4 are in
good agreement with previous results as seen in Table I, there is a
slight deviation for Q ¼ 4.

Q ΔðQÞ DðQÞ Q ΔðQÞ DðQÞ
1 0.516(3) 0.516(3) 7 1.332(5) 6.841(8)
2 0.722(4) 1.238(5) 8 1.437(4) 8.278(9)
3 0.878(4) 2.116(6) 9 1.518(2) 9.796(9)
4 1.012(2) 3.128(6) 10 1.603(2) 11.399(10)
5 1.137(2) 4.265(6) 11 1.678(5) 13.077(11)
6 1.243(3) 5.509(7) 12 1.748(5) 14.825(12)
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Our results:





Q: How well does the Q-expansion work?



excellently described by Eq. (1). Surprisingly, we find that
the large-Q expansion with the first three coefficients
matches the conformal dimensions even at Q ¼ 1, within
a few percent. Thus, our work demonstrates that at least in
some class of models, the large-Q expansion is similar to
the ϵ expansion in the fact that the strongly coupled
conformal fixed point can be described within a simple
perturbative framework. The coefficients of the expansion
could still be difficult to compute analytically, but perhaps
bootstrap techniques could be developed for it [23].
To understand the origin of Eq. (1), consider the

conformal field theory describing the Wilson-Fisher fixed
point in the three-dimensional Oð2Þ universality class. In a
fixed-charge sector Q, the charge density introduces the
mass scale

ffiffiffiffiffiffiffiffiffiffi
Q=V

p
in the theory and, hence, for momentum

scales p ≪
ffiffiffiffiffiffiffiffiffiffi
Q=V

p
the physics is described by a Goldstone

field χ that is controlled by an approximately scale-
invariant Lagrangian [15,17] (see also [24] for a related
approach to effective descriptions of nonrelativistic CFTs),

L¼
k3=2
27

ð∂μχ∂μχÞ3=2þ
k1=2R
3

ð∂μχ∂μχÞ1=2þ%%% ð2Þ

where R is the scalar curvature of the manifold R × Σ.
Thus, we learn that in the large-Q limit only the two
parameters k3=2 and k1=2 that appear in Eq. (2) play an
important role; all other terms are suppressed [16,18]. Since
the charge is nonzero, the action is only meaningful away
from χ ¼ 0 and is to be expanded around the fixed-charge
homogeneous classical solution χ ¼ μt. Using the effective
quantum Hamiltonian arising from the effective Lagrangian
Eq. (2), one can show that the total energy of the system is
given by

EΣðQÞ ¼
ffiffiffiffiffiffi
Q3

V

r "
c3=2 þ c1=2

#
RV
2Q

$
þ % % %

%
þ qΣ þO

1

Q
;

ð3Þ

where the first two terms are related to the couplings in the
effective Lagrangian Eq. (2) through the relations k3=2 ¼
4=c23=2 and k1=2 ¼ −c1=2=c3=2. The higher-order terms in
the expansion are related to higher-dimensional operators
in Eq. (2) and quantum corrections. The last term qΣ arises
due to quantum fluctuations that can be computed exactly
for simple manifolds. For the sphere (R ¼ 2=r20) one finds
qS2 ¼ c0=r0 where c0 ≈−0.094 [22], while for the torus
(R ¼ 0) it is qT2 ¼ c0=L with c0 ≈−0.508 [25].
By choosing Σ ¼ S2 and using the state-operator corre-

spondence one can now easily derive Eq. (1). It is
interesting to note that the coefficients c3=2, c1=2 in
Eqs. (1), (3) are related to the low-energy constants k3=2
and k1=2 of the effective Lagrangian in Eq. (2). Indeed,
these low-energy constants are independent of the manifold
chosen and depend only on the CFT. Assuming the
manifold is the torus we predict that

lim
Q→∞

DðQÞ
ET2ðQÞL

¼ 1

2
ffiffiffi
π

p : ð4Þ

Note that every term in the energy expansion is a dimen-
sionless function of three variables: a coefficient in the
DðQÞ expansion, a geometrical term from the manifold,
and a power of V=Q.
The motivation of our current work is to compute DðQÞ

and EΣðQÞ in the classical Oð2Þ σ model on a torus and
verify the expansions in Eqs. (1) and (3) and the con-
nections between them. We accomplish this by regularizing
the classical Oð2Þ σ model on a cubic lattice with lattice
spacing a and use Monte Carlo methods to perform the
calculations. The model is defined by phases, expðiθxÞ, on
each three-dimensional lattice site x ¼ ðx1a; x2a; x3aÞ and
the nearest-neighbor action

S¼ −β
X

x;α

cosðθx −θxþα̂aÞ: ð5Þ

Here α̂a denotes the three unit lattice vectors, and β is the
coupling of the model. The physics of the Wilson-Fisher
fixed point can be studied by tuning the coupling to its
critical value (βc ¼ 0.454 165 2 [26–28]), where a second-
order phase transition separates the symmetric phase
(β < βc) and the spontaneously broken superfluid phase
(β > βc). Universality implies that details of our specific
model should be irrelevant in the limit a → 0 which is
naturally reached by studying large lattices at βc.
Configurations that contribute to the partition function of

the lattice model at the critical point can be efficiently
generated by both the Wolff cluster algorithm [29] and the
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FIG. 1. Plot of the values of DðQÞ extracted from our
Monte Carlo calculations at the Oð2Þ WF fixed point, along
with the plot of Eq. (1) (solid line) with our estimated values
c3=2 ¼ 1.195 and c1=2 ¼ 0.075 and previously computed value
c0 ¼ −0.094. It is surprising that these three leading coefficients
in Eq. (1) can predict the conformal dimensions for all Q ≥1
very well.
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DQ = 1.195(10) Q3/2 + 0.075(10) Q1/2 � 0.094
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Qubit formulation of the O(4) Wilson-Fisher fixed point!
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Traditional formulations of scalar and gauge field theories begin with 
this commutation relation and hence require an infinite dimensional 
Hilbert space per spatial site. 

Definition: Qubit formulations of a QFT reproduces the QFT of interest 
with a finite dimensional Hilbert space per lattice site.
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Canonical commutation relation of QFTs requires an infinite dimensional 
Hilbert space per lattice site.

Fermions are already qubits, but with anti-commutation relations.
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beyond perturbation 
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Perhaps some day we can also design a quantum computer and 
develop algorithms to study them!

Jordan, Lee, Preskill (2012) + many more in the past two years!

This approach to quantum field theories is well known since 1980s, 
but was not explored essentially due to lack of computational tools.

Today they can be explored using new algorithms developed in the 
past two decades!

This talk: They helped us to explore the large Q-expansion in the O(4) model!

Due to these algorithms, they are often simpler than traditional QFT 
but still reproduce the physics of interest.

D-theory approach, Wiese (2006)
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Euclidean action of the 
traditional theory

S =
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Q: Can we reproduce these features using a Qubit Hamiltonian?
A: Yes! Here we focus on d=2 Wilson-Fisher point!





Use two qubits per site:

|s, ri
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|m, ri,m = 0,+1,�1
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singlet triplet



Use two qubits per site:
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singlet triplet

Thus, a qubit formulation of the O(3) model has four states per site!
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singlet triplet

Thus, a qubit formulation of the O(3) model has four states per site!

Fock 
Vacuum Spin-1 particle
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singlet triplet

Thus, a qubit formulation of the O(3) model has four states per site!

Fock 
Vacuum Spin-1 particle

O(3) invariant 
Hamiltonian

A qubit realization of the O(3) sigma model

Hersh Singh and Shailesh Chandrasekharan1

1Department of Physics, Box 90305, Duke University, Durham, NC 27708, USA

We formulate the O(3) sigma model using two qubit per lattice site. We first show that the two dimensional
qubit Hamiltonian has a quantum critical point where the well known scale invariant physics of the three di-
mensional Wilson-Fisher fixed point is reproduced. We then provide evidence that asymptotic freedom of the
two dimensional O(3) model emerges in the one dimensional qubit model. Finally we show that free massive
bosons arise in the three dimensional qubit model.
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I. INTRODUCTION

A quantitative understanding of quantum field theories pose
unique computational challenges that we must overcome in
order to be able to truly understand nature at a fundamen-
tal level [1, 2]. Currently, our understanding of these quan-
tum many body theories is mainly limited to perturbation the-
ory, and in a few cases involving equilibrium thermal aver-
ages, when sign problems can be solved quantum Monte Carlo
methods can become useful. However, in the vast number
of cases involving non-equilibrium processes and in partic-
ular when theories are strongly coupled the available com-
putational approaches are severely limited. One particularly
promising approach to overcome the computational bottle-
neck that has emerged as a possibility recently is quantum
computation [3]. Universal quantum computers with tens of
qubits already exist and it is very likely that more advanced
ones will begin to appear over the next decade. Anticipating
this possibility, the literature on approaches and algorithms for
using quantum computers to understand quantum many body
systems and quantum field theories has exploded in the recent
years [4–11].

A quantum field operator acts on a local Hilbert space at
every spatial site. While a fermionic field operator acts on a
local two dimensional Hilbert space, bosonic operators (that
describe scalar and gauge fields) are traditionally formulated
with an infinite dimensional Hilbert space even on a single
lattice site. The D-theory approach to quantum field theories
shows how one can formulate a variety of quantum field the-
ories containing both scalar and gauge fields also using lo-
cal finite dimensional Hilbert spaces while preserving all the
symmetries of the theory [12, 13]. Recently concrete realiza-
tions on quantum computers and simulators have also been
proposed [14]. Other ways of truncating the Hilbert space
while approximately preserving the symmetries are also being
explored in simple quantum field theories like the Schwinger
model [15–20].

In the D-theory approach one important way to restore the
infinite dimensional Hilbert space at every site, especially in
the presence of scalar and gauge fields, is the principle of di-
mensional reduction [21–23]. Thus, in order to study a d + 1
dimensional Euclidean quantum field theory one begins with a
d+1 dimensional quantum Hamiltonian which naturally leads
to a d+ 2 dimensional Euclidean quantum field theory. How-
ever, due to the principle of dimensional reduction one obtains

the d + 1 dimensional quantum field theory. In this work we
explore if dimensional reduction is always necessary. For ex-
ample, one may be able to use renormalization group ideas to
reach the fixed point that describes the relavant quantum field
theory. If this is possible, one may be able to construct a qubit
Hamiltonian directly in d dimensions to study a d+ 1 dimen-
sional Euclidean quantum field theory. We consider the O(3)
model to provide evidence for this possibility.

II. THE MODEL

Our model is constructed with two qubits ( or equivalently
a four dimensional Hilbert space ) per lattice site. It will be
convenient for us to choose the singlet |s, rir and the triplet
|m, ri, m = 0,±1 to label the four orthonormal basis states
the site r. The singlet will act like the Fock vacuum while the
triplets will carry the O(3) charge. The Hamiltonian of our
model is defined as a sum of two terms,

H = H1 +H2 (1)

where H1 is a sum over single site operators and H2 is a sum
over nearest neighbor operators. More explicitly,

H1 =
X

r

⇣
JtH

t

r � µHµ

r

⌘
, (2)

where Ht

r is a projection operator into the |mi states on the
site r,

Ht

r =
X

m

|m, rihm, r| (3)

and Hµ

r is the chemical potential term that enhances the |m =
1, ri states and is given by

Hµ

r =
X

m

m |m, rihm, r| (4)

On the other hand

H2 = �
X

hr,r0i

⇣
JhH

h

r,r0 + JpH
p

r,i

⌘
, (5)

where Hh

r,i and Hp

r,i are nearest neighbor bond opertors on the
link connecting the site r and r+ î where i = 1, 2.., d are the
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triplets will carry the O(3) charge. The Hamiltonian of our
model is defined as a sum of two terms,

H = H1 +H2 (1)

where H1 is a sum over single site operators and H2 is a sum
over nearest neighbor operators. More explicitly,
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I. INTRODUCTION
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tum many body theories is mainly limited to perturbation the-
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ages, when sign problems can be solved quantum Monte Carlo
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of cases involving non-equilibrium processes and in partic-
ular when theories are strongly coupled the available com-
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the d + 1 dimensional quantum field theory. In this work we
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model to provide evidence for this possibility.

II. THE MODEL

Our model is constructed with two qubits ( or equivalently
a four dimensional Hilbert space ) per lattice site. It will be
convenient for us to choose the singlet |s, rir and the triplet
|m, ri, m = 0,±1 to label the four orthonormal basis states
the site r. The singlet will act like the Fock vacuum while the
triplets will carry the O(3) charge. The Hamiltonian of our
model is defined as a sum of two terms,

H = H1 +H2 (1)

where H1 is a sum over single site operators and H2 is a sum
over nearest neighbor operators. More explicitly,
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b1
)e�(t1)H1

⌘
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We can evaluate the trace in the singlet triplet representation
by inserting the complete set of states after every insertion of
the bond operator since it can be off diagonoal. This then
leads to a worldline configuration depicting the motion of
m = 0,±1 type particles in a Fock vacuum (s sites).

FIG. 2. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

For convenience we also discretize time into LT equal parts
with temporal extent " (that is, "LT = �) and map the world-
line configuration on a space-time lattice. The partition func-
tion then takes the form

Z =
X

[s,m]

Y

hiji

Whiji (11)

where [s,m] [HS: Why this notation?] is a lattice worldline con-
figuration and Whiji are weights associated with all space-
time bonds hiji. The configuration [s,m] is made up of vac-
uum sites where no particles are moving and sites where one
particle of the type m = 0,±1 is moving. Thus, configu-
rations are made up of empty sites (vacuum) or world lines
(of particles) that form loops. Figure 2 is an illustration of
a worldline configuration in 1 + 1 dimensions. Particle world
lines are shown with lines on the bonds connecting lattice sites
and vacuum sites are depicted as sites with filled circles. Each
particle worldline is a loop, that may be directed (depicting
m = ±1 particles) or undirected (depicting m = 0 type par-
ticles). A temporal bond that contains a m = +1 (m = �1)
particle worldline moving through it is depicted by an arrow
pointing in the positive (negative) time direction. The weights
Whiji can be computed by looking at the configuration on the
bond hiji. If the bond hiji is empty, i.e., does not contain a

particle world line, then Whiji = 1, otherwise it depends on
whether the bond is along a spatial direction or a temporal di-
rection. For convenience we define three weights Ws = "J ,
Wt = e�"Jt and Wµ = emµ". If the bond contains a particle
worldline but is along the spatial direction then Whiji = Ws,
but if it is along the temporal direction then Whiji = WtWµ.
The latter term also depends on the m-charge of the particle
on the temporal bond.

FIG. 3. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

In order to study the physics of our model and establish
that we do indeed reproduce the expected physics of the O(3)
sigma model we focus on four observables.

1. The first is the average density of vacuum sites v which
we define as

v =
1

Z
Tr

⇣ 1

Ld

X

r

P s

r e
��H

⌘
(12)

In the space-time lattice formulation this turns out to be
just the denisity of vacuum sites and easily computed in
each [s,m] configuration.

2. The second observable is the average m-charge defined
as

hQi =
1

Z
Tr

⇣X

r

Qre
��H

⌘
. (13)

In each worldline configuration the m-charge Qr is a
conserved quantity and does not change in time and can
be easily computed. When µ = 0 we expect hQi = 0
due to the SO(3) symmetry. However, as µ increases
hQi will increase and cross 0.5 at a critical coupling
µc. In the massive phase when �, L ! 1 this critical
coupling gives the mass of the O(3) particles.

3. The third observable is the superfluid density ⇢s defined
as the O(3) conserved current susceptibility. One can
compute it using the conserved charge Qw along one of
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FIG. 1. The zero temperature phase diagram of our qubit Hamilto-
nian. The top figure shows the phase structure in two and three spatial
dimensions, while the bottom figure shows the phase structure in one
spatial dimension.

where Hh

r,i and Hp

r,i are nearest neighbor bond opertors on
the link connecting the site r and r+ î where i = 1, 2.., d are
the spatial dimensions. These bond operators act on a 16 di-
mensional nearest neighbor state space with the basis vectors
|s, ri|s, r0i, |s, ri|m, r0i, |m, ri|s, r0i and |m, ri|m0r0i. The
term Hh

r,i is the hopping part of the Hamiltonian and is given
by

Hh

r,r0 =
X

m

n
|s, ri|m, r0ihm, r|hs, r0|

+ |m, ri|s, r0ihs, r|hm, r0|
o

(6)

while Hp

r,r0 denotes the the pair creation-annihilation events
and takes the explicit form

Hp

r,r0 =
X

m

(�1)m
n
|m, ri|�m, r0ihs, r|hs, r0|

+ |s, ri|s, r0ihm, r|h�m, r0|
o

(7)

For convenience we choose to work in the limit Jh = Jp =
J , although this restriction is not necessary to preserve the
symmetries of interest. In our calculations we choose a d-
dimensional regular periodic spatial lattice with L sites in each
direction.

The choice of our model is dictated by the requirement that
it helps us formulate the continuum O(3) sigma model. When
µ = 0, our model Eq. (1) is invariant under global SU(2)
transformations under which all qubits in the model trans-
forms as a spin half state. Under these transformations |s, ri
is invariant by definition and the three triplets |m, ri, m =
0,±1 transform under the spin-1 representation of SU(2),

|m, ri !
X

m0

D(1)
m,m0 |m0, ri, (8)

where D(1)
m,m0 are the SO(3) rotation matrices in the basis

which diagonalizes the z component of the generator of ro-
tations. It is then easy to see that all three terms Ht

r, Hh

r,i and
Hp

r,i are also invariant. In our work we introduce the chem-
ical potential term for purely algorithmic reasons to measure
the mass of the O(3) particles.

In order to understand how the continuum O(3) sigma
model can emerge from our qubit model, it is useful to un-
derstand its phase structure in terms of the dimensionless cou-
pling � = Jt/J (see Fig. 1). When � ! 1, the lattice
Hamiltonian is in a symmetric massive phase since the |m, ri
states are suppressed and the singlet states |s, ri dominate. On
the other hand when � ! �1, every space-time lattice site
contains the triplet state |m, ri, and this leads to the spon-
taneous breaking of the O(3) symmetry with two Goldstone
bosons. Assuming there is a second order quantum critical
point at some intermediate coupling �c, according to Wilson’s
renormalization group ideas, a continuum quantum field the-
ory must emerge close to �c on either side. Let us focus on
the theory for � > �c. Here, we obtain the symmetric massive
phase of the O(3) sigma model where we can use the mass
scale to set the lattice spacing. In 3+1 dimensions, this theory
will be free up to logarithmic corrections, while in 2 + 1 di-
mensions, the scaling will be described by the Wilson-Fisher
fixed point. The case of 1+1 dimensions is more subtle since
the superfluid phase is absent due to the Mermin-Wagner the-
orem. Hence, naively we expect �c ! �1 in 1 + 1 dimen-
sions. An interesting question is whether this critical point
naturally describes the asymptotically-free fixed point of the
two dimensional O(3) sigma model. In this work we will ar-
gue that �c ! �1 is indeed a critical point since at that
point an extra U(1) symmetry emerges in our lattice model.
[HS: Why does emergence of an extra symmetry imply that this is a

critical point?] It is well known that a U(1) symmetry can be
present in a massless phase and we show this is the origin of
the critical point at �c ! �1.

III. WORLDLINE FORMULATION

In order to explore the physics of our qubit Hamiltonian,
we formulate it in the worldline approach and study it using
the worm algorithm. The partition function of our model Z =
Tr(e��H) can be expanded as

Z =
X

k

Z
[dtk...dt1]Tr

⇣
e�(��tk)H1(�H2)

e�(tk�tk�1)H1 · · · (�H2)e
�(t1)H1

⌘
. (9)

where we treat H1 as a free term and H2 as a perturbation.
However the integer k, which labels the number of insertions
of H2 terms, is allowed to take any value and hence the above
expansion is not an approximation. Inserting the expression
for H2 as a sum over nearest neighbor bond operators H�

b

(either Hh

r,i or Hp

r,i), we can rewrite the above expression as
sum over k bond configurations [b,�] at times t1, .., tk given
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FIG. 1. The zero temperature phase diagram of our qubit Hamilto-
nian. The top figure shows the phase structure in two and three spatial
dimensions, while the bottom figure shows the phase structure in one
spatial dimension.

where Hh

r,i and Hp

r,i are nearest neighbor bond opertors on
the link connecting the site r and r+ î where i = 1, 2.., d are
the spatial dimensions. These bond operators act on a 16 di-
mensional nearest neighbor state space with the basis vectors
|s, ri|s, r0i, |s, ri|m, r0i, |m, ri|s, r0i and |m, ri|m0r0i. The
term Hh

r,i is the hopping part of the Hamiltonian and is given
by

Hh

r,r0 =
X

m

n
|s, ri|m, r0ihm, r|hs, r0|

+ |m, ri|s, r0ihs, r|hm, r0|
o

(6)

while Hp

r,r0 denotes the the pair creation-annihilation events
and takes the explicit form

Hp
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(�1)m
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|m, ri|�m, r0ihs, r|hs, r0|

+ |s, ri|s, r0ihm, r|h�m, r0|
o

(7)

For convenience we choose to work in the limit Jh = Jp =
J , although this restriction is not necessary to preserve the
symmetries of interest. In our calculations we choose a d-
dimensional regular periodic spatial lattice with L sites in each
direction.

The choice of our model is dictated by the requirement that
it helps us formulate the continuum O(3) sigma model. When
µ = 0, our model Eq. (1) is invariant under global SU(2)
transformations under which all qubits in the model trans-
forms as a spin half state. Under these transformations |s, ri
is invariant by definition and the three triplets |m, ri, m =
0,±1 transform under the spin-1 representation of SU(2),

|m, ri !
X

m0

D(1)
m,m0 |m0, ri, (8)

where D(1)
m,m0 are the SO(3) rotation matrices in the basis

which diagonalizes the z component of the generator of ro-
tations. It is then easy to see that all three terms Ht

r, Hh

r,i and
Hp

r,i are also invariant. In our work we introduce the chem-
ical potential term for purely algorithmic reasons to measure
the mass of the O(3) particles.

In order to understand how the continuum O(3) sigma
model can emerge from our qubit model, it is useful to un-
derstand its phase structure in terms of the dimensionless cou-
pling � = Jt/J (see Fig. 1). When � ! 1, the lattice
Hamiltonian is in a symmetric massive phase since the |m, ri
states are suppressed and the singlet states |s, ri dominate. On
the other hand when � ! �1, every space-time lattice site
contains the triplet state |m, ri, and this leads to the spon-
taneous breaking of the O(3) symmetry with two Goldstone
bosons. Assuming there is a second order quantum critical
point at some intermediate coupling �c, according to Wilson’s
renormalization group ideas, a continuum quantum field the-
ory must emerge close to �c on either side. Let us focus on
the theory for � > �c. Here, we obtain the symmetric massive
phase of the O(3) sigma model where we can use the mass
scale to set the lattice spacing. In 3+1 dimensions, this theory
will be free up to logarithmic corrections, while in 2 + 1 di-
mensions, the scaling will be described by the Wilson-Fisher
fixed point. The case of 1+1 dimensions is more subtle since
the superfluid phase is absent due to the Mermin-Wagner the-
orem. Hence, naively we expect �c ! �1 in 1 + 1 dimen-
sions. An interesting question is whether this critical point
naturally describes the asymptotically-free fixed point of the
two dimensional O(3) sigma model. In this work we will ar-
gue that �c ! �1 is indeed a critical point since at that
point an extra U(1) symmetry emerges in our lattice model.
[HS: Why does emergence of an extra symmetry imply that this is a

critical point?] It is well known that a U(1) symmetry can be
present in a massless phase and we show this is the origin of
the critical point at �c ! �1.

III. WORLDLINE FORMULATION

In order to explore the physics of our qubit Hamiltonian,
we formulate it in the worldline approach and study it using
the worm algorithm. The partition function of our model Z =
Tr(e��H) can be expanded as

Z =
X

k

Z
[dtk...dt1]Tr

⇣
e�(��tk)H1(�H2)

e�(tk�tk�1)H1 · · · (�H2)e
�(t1)H1

⌘
. (9)

where we treat H1 as a free term and H2 as a perturbation.
However the integer k, which labels the number of insertions
of H2 terms, is allowed to take any value and hence the above
expansion is not an approximation. Inserting the expression
for H2 as a sum over nearest neighbor bond operators H�

b

(either Hh

r,i or Hp

r,i), we can rewrite the above expression as
sum over k bond configurations [b,�] at times t1, .., tk given
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We can evaluate the trace in the singlet triplet representation
by inserting the complete set of states after every insertion of
the bond operator since it can be off diagonoal. This then
leads to a worldline configuration depicting the motion of
m = 0,±1 type particles in a Fock vacuum (s sites).

FIG. 2. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

For convenience we also discretize time into LT equal parts
with temporal extent " (that is, "LT = �) and map the world-
line configuration on a space-time lattice. The partition func-
tion then takes the form

Z =
X

[s,m]

Y

hiji

Whiji (11)

where [s,m] [HS: Why this notation?] is a lattice worldline con-
figuration and Whiji are weights associated with all space-
time bonds hiji. The configuration [s,m] is made up of vac-
uum sites where no particles are moving and sites where one
particle of the type m = 0,±1 is moving. Thus, configu-
rations are made up of empty sites (vacuum) or world lines
(of particles) that form loops. Figure 2 is an illustration of
a worldline configuration in 1 + 1 dimensions. Particle world
lines are shown with lines on the bonds connecting lattice sites
and vacuum sites are depicted as sites with filled circles. Each
particle worldline is a loop, that may be directed (depicting
m = ±1 particles) or undirected (depicting m = 0 type par-
ticles). A temporal bond that contains a m = +1 (m = �1)
particle worldline moving through it is depicted by an arrow
pointing in the positive (negative) time direction. The weights
Whiji can be computed by looking at the configuration on the
bond hiji. If the bond hiji is empty, i.e., does not contain a

particle world line, then Whiji = 1, otherwise it depends on
whether the bond is along a spatial direction or a temporal di-
rection. For convenience we define three weights Ws = "J ,
Wt = e�"Jt and Wµ = emµ". If the bond contains a particle
worldline but is along the spatial direction then Whiji = Ws,
but if it is along the temporal direction then Whiji = WtWµ.
The latter term also depends on the m-charge of the particle
on the temporal bond.

FIG. 3. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

In order to study the physics of our model and establish
that we do indeed reproduce the expected physics of the O(3)
sigma model we focus on four observables.

1. The first is the average density of vacuum sites v which
we define as

v =
1

Z
Tr

⇣ 1

Ld

X

r

P s

r e
��H

⌘
(12)

In the space-time lattice formulation this turns out to be
just the denisity of vacuum sites and easily computed in
each [s,m] configuration.

2. The second observable is the average m-charge defined
as

hQi =
1

Z
Tr

⇣X

r

Qre
��H

⌘
. (13)

In each worldline configuration the m-charge Qr is a
conserved quantity and does not change in time and can
be easily computed. When µ = 0 we expect hQi = 0
due to the SO(3) symmetry. However, as µ increases
hQi will increase and cross 0.5 at a critical coupling
µc. In the massive phase when �, L ! 1 this critical
coupling gives the mass of the O(3) particles.

3. The third observable is the superfluid density ⇢s defined
as the O(3) conserved current susceptibility. One can
compute it using the conserved charge Qw along one of
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FIG. 1. The zero temperature phase diagram of our qubit Hamilto-
nian. The top figure shows the phase structure in two and three spatial
dimensions, while the bottom figure shows the phase structure in one
spatial dimension.

where Hh

r,i and Hp

r,i are nearest neighbor bond opertors on
the link connecting the site r and r+ î where i = 1, 2.., d are
the spatial dimensions. These bond operators act on a 16 di-
mensional nearest neighbor state space with the basis vectors
|s, ri|s, r0i, |s, ri|m, r0i, |m, ri|s, r0i and |m, ri|m0r0i. The
term Hh

r,i is the hopping part of the Hamiltonian and is given
by
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r,r0 =
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while Hp

r,r0 denotes the the pair creation-annihilation events
and takes the explicit form
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|m, ri|�m, r0ihs, r|hs, r0|
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For convenience we choose to work in the limit Jh = Jp =
J , although this restriction is not necessary to preserve the
symmetries of interest. In our calculations we choose a d-
dimensional regular periodic spatial lattice with L sites in each
direction.

The choice of our model is dictated by the requirement that
it helps us formulate the continuum O(3) sigma model. When
µ = 0, our model Eq. (1) is invariant under global SU(2)
transformations under which all qubits in the model trans-
forms as a spin half state. Under these transformations |s, ri
is invariant by definition and the three triplets |m, ri, m =
0,±1 transform under the spin-1 representation of SU(2),

|m, ri !
X

m0

D(1)
m,m0 |m0, ri, (8)

where D(1)
m,m0 are the SO(3) rotation matrices in the basis

which diagonalizes the z component of the generator of ro-
tations. It is then easy to see that all three terms Ht

r, Hh

r,i and
Hp

r,i are also invariant. In our work we introduce the chem-
ical potential term for purely algorithmic reasons to measure
the mass of the O(3) particles.

In order to understand how the continuum O(3) sigma
model can emerge from our qubit model, it is useful to un-
derstand its phase structure in terms of the dimensionless cou-
pling � = Jt/J (see Fig. 1). When � ! 1, the lattice
Hamiltonian is in a symmetric massive phase since the |m, ri
states are suppressed and the singlet states |s, ri dominate. On
the other hand when � ! �1, every space-time lattice site
contains the triplet state |m, ri, and this leads to the spon-
taneous breaking of the O(3) symmetry with two Goldstone
bosons. Assuming there is a second order quantum critical
point at some intermediate coupling �c, according to Wilson’s
renormalization group ideas, a continuum quantum field the-
ory must emerge close to �c on either side. Let us focus on
the theory for � > �c. Here, we obtain the symmetric massive
phase of the O(3) sigma model where we can use the mass
scale to set the lattice spacing. In 3+1 dimensions, this theory
will be free up to logarithmic corrections, while in 2 + 1 di-
mensions, the scaling will be described by the Wilson-Fisher
fixed point. The case of 1+1 dimensions is more subtle since
the superfluid phase is absent due to the Mermin-Wagner the-
orem. Hence, naively we expect �c ! �1 in 1 + 1 dimen-
sions. An interesting question is whether this critical point
naturally describes the asymptotically-free fixed point of the
two dimensional O(3) sigma model. In this work we will ar-
gue that �c ! �1 is indeed a critical point since at that
point an extra U(1) symmetry emerges in our lattice model.
[HS: Why does emergence of an extra symmetry imply that this is a

critical point?] It is well known that a U(1) symmetry can be
present in a massless phase and we show this is the origin of
the critical point at �c ! �1.

III. WORLDLINE FORMULATION

In order to explore the physics of our qubit Hamiltonian,
we formulate it in the worldline approach and study it using
the worm algorithm. The partition function of our model Z =
Tr(e��H) can be expanded as

Z =
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Z
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e�(tk�tk�1)H1 · · · (�H2)e
�(t1)H1
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where we treat H1 as a free term and H2 as a perturbation.
However the integer k, which labels the number of insertions
of H2 terms, is allowed to take any value and hence the above
expansion is not an approximation. Inserting the expression
for H2 as a sum over nearest neighbor bond operators H�

b

(either Hh

r,i or Hp

r,i), we can rewrite the above expression as
sum over k bond configurations [b,�] at times t1, .., tk given
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FIG. 1. The zero temperature phase diagram of our qubit Hamilto-
nian. The top figure shows the phase structure in two and three spatial
dimensions, while the bottom figure shows the phase structure in one
spatial dimension.

where Hh

r,i and Hp

r,i are nearest neighbor bond opertors on
the link connecting the site r and r+ î where i = 1, 2.., d are
the spatial dimensions. These bond operators act on a 16 di-
mensional nearest neighbor state space with the basis vectors
|s, ri|s, r0i, |s, ri|m, r0i, |m, ri|s, r0i and |m, ri|m0r0i. The
term Hh

r,i is the hopping part of the Hamiltonian and is given
by

Hh

r,r0 =
X

m

n
|s, ri|m, r0ihm, r|hs, r0|

+ |m, ri|s, r0ihs, r|hm, r0|
o

(6)

while Hp

r,r0 denotes the the pair creation-annihilation events
and takes the explicit form

Hp

r,r0 =
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(�1)m
n
|m, ri|�m, r0ihs, r|hs, r0|

+ |s, ri|s, r0ihm, r|h�m, r0|
o

(7)

For convenience we choose to work in the limit Jh = Jp =
J , although this restriction is not necessary to preserve the
symmetries of interest. In our calculations we choose a d-
dimensional regular periodic spatial lattice with L sites in each
direction.

The choice of our model is dictated by the requirement that
it helps us formulate the continuum O(3) sigma model. When
µ = 0, our model Eq. (1) is invariant under global SU(2)
transformations under which all qubits in the model trans-
forms as a spin half state. Under these transformations |s, ri
is invariant by definition and the three triplets |m, ri, m =
0,±1 transform under the spin-1 representation of SU(2),

|m, ri !
X

m0

D(1)
m,m0 |m0, ri, (8)

where D(1)
m,m0 are the SO(3) rotation matrices in the basis

which diagonalizes the z component of the generator of ro-
tations. It is then easy to see that all three terms Ht

r, Hh

r,i and
Hp

r,i are also invariant. In our work we introduce the chem-
ical potential term for purely algorithmic reasons to measure
the mass of the O(3) particles.

In order to understand how the continuum O(3) sigma
model can emerge from our qubit model, it is useful to un-
derstand its phase structure in terms of the dimensionless cou-
pling � = Jt/J (see Fig. 1). When � ! 1, the lattice
Hamiltonian is in a symmetric massive phase since the |m, ri
states are suppressed and the singlet states |s, ri dominate. On
the other hand when � ! �1, every space-time lattice site
contains the triplet state |m, ri, and this leads to the spon-
taneous breaking of the O(3) symmetry with two Goldstone
bosons. Assuming there is a second order quantum critical
point at some intermediate coupling �c, according to Wilson’s
renormalization group ideas, a continuum quantum field the-
ory must emerge close to �c on either side. Let us focus on
the theory for � > �c. Here, we obtain the symmetric massive
phase of the O(3) sigma model where we can use the mass
scale to set the lattice spacing. In 3+1 dimensions, this theory
will be free up to logarithmic corrections, while in 2 + 1 di-
mensions, the scaling will be described by the Wilson-Fisher
fixed point. The case of 1+1 dimensions is more subtle since
the superfluid phase is absent due to the Mermin-Wagner the-
orem. Hence, naively we expect �c ! �1 in 1 + 1 dimen-
sions. An interesting question is whether this critical point
naturally describes the asymptotically-free fixed point of the
two dimensional O(3) sigma model. In this work we will ar-
gue that �c ! �1 is indeed a critical point since at that
point an extra U(1) symmetry emerges in our lattice model.
[HS: Why does emergence of an extra symmetry imply that this is a

critical point?] It is well known that a U(1) symmetry can be
present in a massless phase and we show this is the origin of
the critical point at �c ! �1.

III. WORLDLINE FORMULATION

In order to explore the physics of our qubit Hamiltonian,
we formulate it in the worldline approach and study it using
the worm algorithm. The partition function of our model Z =
Tr(e��H) can be expanded as

Z =
X

k

Z
[dtk...dt1]Tr

⇣
e�(��tk)H1(�H2)

e�(tk�tk�1)H1 · · · (�H2)e
�(t1)H1

⌘
. (9)

where we treat H1 as a free term and H2 as a perturbation.
However the integer k, which labels the number of insertions
of H2 terms, is allowed to take any value and hence the above
expansion is not an approximation. Inserting the expression
for H2 as a sum over nearest neighbor bond operators H�

b

(either Hh

r,i or Hp

r,i), we can rewrite the above expression as
sum over k bond configurations [b,�] at times t1, .., tk given
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[dtk...dt1]
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e�(��tk)H1(�H�k
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e�(tk�tk�1)H1 · · · (�H�1
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)e�(t1)H1

⌘
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We can evaluate the trace in the singlet triplet representation
by inserting the complete set of states after every insertion of
the bond operator since it can be off diagonoal. This then
leads to a worldline configuration depicting the motion of
m = 0,±1 type particles in a Fock vacuum (s sites).

FIG. 2. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

For convenience we also discretize time into LT equal parts
with temporal extent " (that is, "LT = �) and map the world-
line configuration on a space-time lattice. The partition func-
tion then takes the form

Z =
X

[s,m]

Y

hiji

Whiji (11)

where [s,m] [HS: Why this notation?] is a lattice worldline con-
figuration and Whiji are weights associated with all space-
time bonds hiji. The configuration [s,m] is made up of vac-
uum sites where no particles are moving and sites where one
particle of the type m = 0,±1 is moving. Thus, configu-
rations are made up of empty sites (vacuum) or world lines
(of particles) that form loops. Figure 2 is an illustration of
a worldline configuration in 1 + 1 dimensions. Particle world
lines are shown with lines on the bonds connecting lattice sites
and vacuum sites are depicted as sites with filled circles. Each
particle worldline is a loop, that may be directed (depicting
m = ±1 particles) or undirected (depicting m = 0 type par-
ticles). A temporal bond that contains a m = +1 (m = �1)
particle worldline moving through it is depicted by an arrow
pointing in the positive (negative) time direction. The weights
Whiji can be computed by looking at the configuration on the
bond hiji. If the bond hiji is empty, i.e., does not contain a

particle world line, then Whiji = 1, otherwise it depends on
whether the bond is along a spatial direction or a temporal di-
rection. For convenience we define three weights Ws = "J ,
Wt = e�"Jt and Wµ = emµ". If the bond contains a particle
worldline but is along the spatial direction then Whiji = Ws,
but if it is along the temporal direction then Whiji = WtWµ.
The latter term also depends on the m-charge of the particle
on the temporal bond.

FIG. 3. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

In order to study the physics of our model and establish
that we do indeed reproduce the expected physics of the O(3)
sigma model we focus on four observables.

1. The first is the average density of vacuum sites v which
we define as

v =
1

Z
Tr

⇣ 1

Ld

X

r

P s

r e
��H

⌘
(12)

In the space-time lattice formulation this turns out to be
just the denisity of vacuum sites and easily computed in
each [s,m] configuration.

2. The second observable is the average m-charge defined
as

hQi =
1

Z
Tr

⇣X

r

Qre
��H

⌘
. (13)

In each worldline configuration the m-charge Qr is a
conserved quantity and does not change in time and can
be easily computed. When µ = 0 we expect hQi = 0
due to the SO(3) symmetry. However, as µ increases
hQi will increase and cross 0.5 at a critical coupling
µc. In the massive phase when �, L ! 1 this critical
coupling gives the mass of the O(3) particles.

3. The third observable is the superfluid density ⇢s defined
as the O(3) conserved current susceptibility. One can
compute it using the conserved charge Qw along one of

Ws = "J
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figuration and Whiji are weights associated with all space-
time bonds hiji. The configuration [s,m] is made up of vac-
uum sites where no particles are moving and sites where one
particle of the type m = 0,±1 is moving. Thus, configu-
rations are made up of empty sites (vacuum) or world lines
(of particles) that form loops. Figure 2 is an illustration of
a worldline configuration in 1 + 1 dimensions. Particle world
lines are shown with lines on the bonds connecting lattice sites
and vacuum sites are depicted as sites with filled circles. Each
particle worldline is a loop, that may be directed (depicting
m = ±1 particles) or undirected (depicting m = 0 type par-
ticles). A temporal bond that contains a m = +1 (m = �1)
particle worldline moving through it is depicted by an arrow
pointing in the positive (negative) time direction. The weights
Whiji can be computed by looking at the configuration on the
bond hiji. If the bond hiji is empty, i.e., does not contain a

particle world line, then Whiji = 1, otherwise it depends on
whether the bond is along a spatial direction or a temporal di-
rection. For convenience we define three weights Ws = "J ,
Wt = e�"Jt and Wµ = emµ". If the bond contains a particle
worldline but is along the spatial direction then Whiji = Ws,
but if it is along the temporal direction then Whiji = WtWµ.
The latter term also depends on the m-charge of the particle
on the temporal bond.
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In order to study the physics of our model and establish
that we do indeed reproduce the expected physics of the O(3)
sigma model we focus on four observables.

1. The first is the average density of vacuum sites v which
we define as

v =
1

Z
Tr

⇣ 1

Ld
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⌘
(12)

In the space-time lattice formulation this turns out to be
just the denisity of vacuum sites and easily computed in
each [s,m] configuration.

2. The second observable is the average m-charge defined
as

hQi =
1

Z
Tr

⇣X

r

Qre
��H

⌘
. (13)

In each worldline configuration the m-charge Qr is a
conserved quantity and does not change in time and can
be easily computed. When µ = 0 we expect hQi = 0
due to the SO(3) symmetry. However, as µ increases
hQi will increase and cross 0.5 at a critical coupling
µc. In the massive phase when �, L ! 1 this critical
coupling gives the mass of the O(3) particles.

3. The third observable is the superfluid density ⇢s defined
as the O(3) conserved current susceptibility. One can
compute it using the conserved charge Qw along one of
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FIG. 1. The zero temperature phase diagram of our qubit Hamilto-
nian. The top figure shows the phase structure in two and three spatial
dimensions, while the bottom figure shows the phase structure in one
spatial dimension.

where Hh

r,i and Hp

r,i are nearest neighbor bond opertors on
the link connecting the site r and r+ î where i = 1, 2.., d are
the spatial dimensions. These bond operators act on a 16 di-
mensional nearest neighbor state space with the basis vectors
|s, ri|s, r0i, |s, ri|m, r0i, |m, ri|s, r0i and |m, ri|m0r0i. The
term Hh

r,i is the hopping part of the Hamiltonian and is given
by

Hh

r,r0 =
X

m

n
|s, ri|m, r0ihm, r|hs, r0|

+ |m, ri|s, r0ihs, r|hm, r0|
o

(6)

while Hp

r,r0 denotes the the pair creation-annihilation events
and takes the explicit form

Hp

r,r0 =
X

m

(�1)m
n
|m, ri|�m, r0ihs, r|hs, r0|

+ |s, ri|s, r0ihm, r|h�m, r0|
o

(7)

For convenience we choose to work in the limit Jh = Jp =
J , although this restriction is not necessary to preserve the
symmetries of interest. In our calculations we choose a d-
dimensional regular periodic spatial lattice with L sites in each
direction.

The choice of our model is dictated by the requirement that
it helps us formulate the continuum O(3) sigma model. When
µ = 0, our model Eq. (1) is invariant under global SU(2)
transformations under which all qubits in the model trans-
forms as a spin half state. Under these transformations |s, ri
is invariant by definition and the three triplets |m, ri, m =
0,±1 transform under the spin-1 representation of SU(2),

|m, ri !
X

m0

D(1)
m,m0 |m0, ri, (8)

where D(1)
m,m0 are the SO(3) rotation matrices in the basis

which diagonalizes the z component of the generator of ro-
tations. It is then easy to see that all three terms Ht

r, Hh

r,i and
Hp

r,i are also invariant. In our work we introduce the chem-
ical potential term for purely algorithmic reasons to measure
the mass of the O(3) particles.

In order to understand how the continuum O(3) sigma
model can emerge from our qubit model, it is useful to un-
derstand its phase structure in terms of the dimensionless cou-
pling � = Jt/J (see Fig. 1). When � ! 1, the lattice
Hamiltonian is in a symmetric massive phase since the |m, ri
states are suppressed and the singlet states |s, ri dominate. On
the other hand when � ! �1, every space-time lattice site
contains the triplet state |m, ri, and this leads to the spon-
taneous breaking of the O(3) symmetry with two Goldstone
bosons. Assuming there is a second order quantum critical
point at some intermediate coupling �c, according to Wilson’s
renormalization group ideas, a continuum quantum field the-
ory must emerge close to �c on either side. Let us focus on
the theory for � > �c. Here, we obtain the symmetric massive
phase of the O(3) sigma model where we can use the mass
scale to set the lattice spacing. In 3+1 dimensions, this theory
will be free up to logarithmic corrections, while in 2 + 1 di-
mensions, the scaling will be described by the Wilson-Fisher
fixed point. The case of 1+1 dimensions is more subtle since
the superfluid phase is absent due to the Mermin-Wagner the-
orem. Hence, naively we expect �c ! �1 in 1 + 1 dimen-
sions. An interesting question is whether this critical point
naturally describes the asymptotically-free fixed point of the
two dimensional O(3) sigma model. In this work we will ar-
gue that �c ! �1 is indeed a critical point since at that
point an extra U(1) symmetry emerges in our lattice model.
[HS: Why does emergence of an extra symmetry imply that this is a

critical point?] It is well known that a U(1) symmetry can be
present in a massless phase and we show this is the origin of
the critical point at �c ! �1.

III. WORLDLINE FORMULATION

In order to explore the physics of our qubit Hamiltonian,
we formulate it in the worldline approach and study it using
the worm algorithm. The partition function of our model Z =
Tr(e��H) can be expanded as

Z =
X

k

Z
[dtk...dt1]Tr

⇣
e�(��tk)H1(�H2)

e�(tk�tk�1)H1 · · · (�H2)e
�(t1)H1

⌘
. (9)

where we treat H1 as a free term and H2 as a perturbation.
However the integer k, which labels the number of insertions
of H2 terms, is allowed to take any value and hence the above
expansion is not an approximation. Inserting the expression
for H2 as a sum over nearest neighbor bond operators H�

b

(either Hh

r,i or Hp

r,i), we can rewrite the above expression as
sum over k bond configurations [b,�] at times t1, .., tk given
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FIG. 1. The zero temperature phase diagram of our qubit Hamilto-
nian. The top figure shows the phase structure in two and three spatial
dimensions, while the bottom figure shows the phase structure in one
spatial dimension.
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r,i are nearest neighbor bond opertors on
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the spatial dimensions. These bond operators act on a 16 di-
mensional nearest neighbor state space with the basis vectors
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For convenience we choose to work in the limit Jh = Jp =
J , although this restriction is not necessary to preserve the
symmetries of interest. In our calculations we choose a d-
dimensional regular periodic spatial lattice with L sites in each
direction.

The choice of our model is dictated by the requirement that
it helps us formulate the continuum O(3) sigma model. When
µ = 0, our model Eq. (1) is invariant under global SU(2)
transformations under which all qubits in the model trans-
forms as a spin half state. Under these transformations |s, ri
is invariant by definition and the three triplets |m, ri, m =
0,±1 transform under the spin-1 representation of SU(2),
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which diagonalizes the z component of the generator of ro-
tations. It is then easy to see that all three terms Ht

r, Hh

r,i and
Hp

r,i are also invariant. In our work we introduce the chem-
ical potential term for purely algorithmic reasons to measure
the mass of the O(3) particles.

In order to understand how the continuum O(3) sigma
model can emerge from our qubit model, it is useful to un-
derstand its phase structure in terms of the dimensionless cou-
pling � = Jt/J (see Fig. 1). When � ! 1, the lattice
Hamiltonian is in a symmetric massive phase since the |m, ri
states are suppressed and the singlet states |s, ri dominate. On
the other hand when � ! �1, every space-time lattice site
contains the triplet state |m, ri, and this leads to the spon-
taneous breaking of the O(3) symmetry with two Goldstone
bosons. Assuming there is a second order quantum critical
point at some intermediate coupling �c, according to Wilson’s
renormalization group ideas, a continuum quantum field the-
ory must emerge close to �c on either side. Let us focus on
the theory for � > �c. Here, we obtain the symmetric massive
phase of the O(3) sigma model where we can use the mass
scale to set the lattice spacing. In 3+1 dimensions, this theory
will be free up to logarithmic corrections, while in 2 + 1 di-
mensions, the scaling will be described by the Wilson-Fisher
fixed point. The case of 1+1 dimensions is more subtle since
the superfluid phase is absent due to the Mermin-Wagner the-
orem. Hence, naively we expect �c ! �1 in 1 + 1 dimen-
sions. An interesting question is whether this critical point
naturally describes the asymptotically-free fixed point of the
two dimensional O(3) sigma model. In this work we will ar-
gue that �c ! �1 is indeed a critical point since at that
point an extra U(1) symmetry emerges in our lattice model.
[HS: Why does emergence of an extra symmetry imply that this is a

critical point?] It is well known that a U(1) symmetry can be
present in a massless phase and we show this is the origin of
the critical point at �c ! �1.

III. WORLDLINE FORMULATION

In order to explore the physics of our qubit Hamiltonian,
we formulate it in the worldline approach and study it using
the worm algorithm. The partition function of our model Z =
Tr(e��H) can be expanded as
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where we treat H1 as a free term and H2 as a perturbation.
However the integer k, which labels the number of insertions
of H2 terms, is allowed to take any value and hence the above
expansion is not an approximation. Inserting the expression
for H2 as a sum over nearest neighbor bond operators H�
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(either Hh
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r,i), we can rewrite the above expression as
sum over k bond configurations [b,�] at times t1, .., tk given
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We can evaluate the trace in the singlet triplet representation
by inserting the complete set of states after every insertion of
the bond operator since it can be off diagonoal. This then
leads to a worldline configuration depicting the motion of
m = 0,±1 type particles in a Fock vacuum (s sites).

FIG. 2. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

For convenience we also discretize time into LT equal parts
with temporal extent " (that is, "LT = �) and map the world-
line configuration on a space-time lattice. The partition func-
tion then takes the form

Z =
X

[s,m]

Y

hiji

Whiji (11)

where [s,m] [HS: Why this notation?] is a lattice worldline con-
figuration and Whiji are weights associated with all space-
time bonds hiji. The configuration [s,m] is made up of vac-
uum sites where no particles are moving and sites where one
particle of the type m = 0,±1 is moving. Thus, configu-
rations are made up of empty sites (vacuum) or world lines
(of particles) that form loops. Figure 2 is an illustration of
a worldline configuration in 1 + 1 dimensions. Particle world
lines are shown with lines on the bonds connecting lattice sites
and vacuum sites are depicted as sites with filled circles. Each
particle worldline is a loop, that may be directed (depicting
m = ±1 particles) or undirected (depicting m = 0 type par-
ticles). A temporal bond that contains a m = +1 (m = �1)
particle worldline moving through it is depicted by an arrow
pointing in the positive (negative) time direction. The weights
Whiji can be computed by looking at the configuration on the
bond hiji. If the bond hiji is empty, i.e., does not contain a

particle world line, then Whiji = 1, otherwise it depends on
whether the bond is along a spatial direction or a temporal di-
rection. For convenience we define three weights Ws = "J ,
Wt = e�"Jt and Wµ = emµ". If the bond contains a particle
worldline but is along the spatial direction then Whiji = Ws,
but if it is along the temporal direction then Whiji = WtWµ.
The latter term also depends on the m-charge of the particle
on the temporal bond.

FIG. 3. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

In order to study the physics of our model and establish
that we do indeed reproduce the expected physics of the O(3)
sigma model we focus on four observables.

1. The first is the average density of vacuum sites v which
we define as

v =
1

Z
Tr

⇣ 1
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In the space-time lattice formulation this turns out to be
just the denisity of vacuum sites and easily computed in
each [s,m] configuration.

2. The second observable is the average m-charge defined
as

hQi =
1

Z
Tr

⇣X

r

Qre
��H

⌘
. (13)

In each worldline configuration the m-charge Qr is a
conserved quantity and does not change in time and can
be easily computed. When µ = 0 we expect hQi = 0
due to the SO(3) symmetry. However, as µ increases
hQi will increase and cross 0.5 at a critical coupling
µc. In the massive phase when �, L ! 1 this critical
coupling gives the mass of the O(3) particles.

3. The third observable is the superfluid density ⇢s defined
as the O(3) conserved current susceptibility. One can
compute it using the conserved charge Qw along one of
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We can evaluate the trace in the singlet triplet representation
by inserting the complete set of states after every insertion of
the bond operator since it can be off diagonoal. This then
leads to a worldline configuration depicting the motion of
m = 0,±1 type particles in a Fock vacuum (s sites).

FIG. 2. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

For convenience we also discretize time into LT equal parts
with temporal extent " (that is, "LT = �) and map the world-
line configuration on a space-time lattice. The partition func-
tion then takes the form

Z =
X

[s,m]

Y

hiji

Whiji (11)

where [s,m] [HS: Why this notation?] is a lattice worldline con-
figuration and Whiji are weights associated with all space-
time bonds hiji. The configuration [s,m] is made up of vac-
uum sites where no particles are moving and sites where one
particle of the type m = 0,±1 is moving. Thus, configu-
rations are made up of empty sites (vacuum) or world lines
(of particles) that form loops. Figure 2 is an illustration of
a worldline configuration in 1 + 1 dimensions. Particle world
lines are shown with lines on the bonds connecting lattice sites
and vacuum sites are depicted as sites with filled circles. Each
particle worldline is a loop, that may be directed (depicting
m = ±1 particles) or undirected (depicting m = 0 type par-
ticles). A temporal bond that contains a m = +1 (m = �1)
particle worldline moving through it is depicted by an arrow
pointing in the positive (negative) time direction. The weights
Whiji can be computed by looking at the configuration on the
bond hiji. If the bond hiji is empty, i.e., does not contain a

particle world line, then Whiji = 1, otherwise it depends on
whether the bond is along a spatial direction or a temporal di-
rection. For convenience we define three weights Ws = "J ,
Wt = e�"Jt and Wµ = emµ". If the bond contains a particle
worldline but is along the spatial direction then Whiji = Ws,
but if it is along the temporal direction then Whiji = WtWµ.
The latter term also depends on the m-charge of the particle
on the temporal bond.

FIG. 3. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

In order to study the physics of our model and establish
that we do indeed reproduce the expected physics of the O(3)
sigma model we focus on four observables.

1. The first is the average density of vacuum sites v which
we define as

v =
1

Z
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In the space-time lattice formulation this turns out to be
just the denisity of vacuum sites and easily computed in
each [s,m] configuration.

2. The second observable is the average m-charge defined
as

hQi =
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Z
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⇣X
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��H

⌘
. (13)

In each worldline configuration the m-charge Qr is a
conserved quantity and does not change in time and can
be easily computed. When µ = 0 we expect hQi = 0
due to the SO(3) symmetry. However, as µ increases
hQi will increase and cross 0.5 at a critical coupling
µc. In the massive phase when �, L ! 1 this critical
coupling gives the mass of the O(3) particles.

3. The third observable is the superfluid density ⇢s defined
as the O(3) conserved current susceptibility. One can
compute it using the conserved charge Qw along one of
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FIG. 1. The zero temperature phase diagram of our qubit Hamilto-
nian. The top figure shows the phase structure in two and three spatial
dimensions, while the bottom figure shows the phase structure in one
spatial dimension.

where Hh

r,i and Hp

r,i are nearest neighbor bond opertors on
the link connecting the site r and r+ î where i = 1, 2.., d are
the spatial dimensions. These bond operators act on a 16 di-
mensional nearest neighbor state space with the basis vectors
|s, ri|s, r0i, |s, ri|m, r0i, |m, ri|s, r0i and |m, ri|m0r0i. The
term Hh

r,i is the hopping part of the Hamiltonian and is given
by

Hh

r,r0 =
X

m

n
|s, ri|m, r0ihm, r|hs, r0|

+ |m, ri|s, r0ihs, r|hm, r0|
o

(6)

while Hp

r,r0 denotes the the pair creation-annihilation events
and takes the explicit form

Hp

r,r0 =
X

m

(�1)m
n
|m, ri|�m, r0ihs, r|hs, r0|

+ |s, ri|s, r0ihm, r|h�m, r0|
o

(7)

For convenience we choose to work in the limit Jh = Jp =
J , although this restriction is not necessary to preserve the
symmetries of interest. In our calculations we choose a d-
dimensional regular periodic spatial lattice with L sites in each
direction.

The choice of our model is dictated by the requirement that
it helps us formulate the continuum O(3) sigma model. When
µ = 0, our model Eq. (1) is invariant under global SU(2)
transformations under which all qubits in the model trans-
forms as a spin half state. Under these transformations |s, ri
is invariant by definition and the three triplets |m, ri, m =
0,±1 transform under the spin-1 representation of SU(2),

|m, ri !
X

m0

D(1)
m,m0 |m0, ri, (8)

where D(1)
m,m0 are the SO(3) rotation matrices in the basis

which diagonalizes the z component of the generator of ro-
tations. It is then easy to see that all three terms Ht

r, Hh

r,i and
Hp

r,i are also invariant. In our work we introduce the chem-
ical potential term for purely algorithmic reasons to measure
the mass of the O(3) particles.

In order to understand how the continuum O(3) sigma
model can emerge from our qubit model, it is useful to un-
derstand its phase structure in terms of the dimensionless cou-
pling � = Jt/J (see Fig. 1). When � ! 1, the lattice
Hamiltonian is in a symmetric massive phase since the |m, ri
states are suppressed and the singlet states |s, ri dominate. On
the other hand when � ! �1, every space-time lattice site
contains the triplet state |m, ri, and this leads to the spon-
taneous breaking of the O(3) symmetry with two Goldstone
bosons. Assuming there is a second order quantum critical
point at some intermediate coupling �c, according to Wilson’s
renormalization group ideas, a continuum quantum field the-
ory must emerge close to �c on either side. Let us focus on
the theory for � > �c. Here, we obtain the symmetric massive
phase of the O(3) sigma model where we can use the mass
scale to set the lattice spacing. In 3+1 dimensions, this theory
will be free up to logarithmic corrections, while in 2 + 1 di-
mensions, the scaling will be described by the Wilson-Fisher
fixed point. The case of 1+1 dimensions is more subtle since
the superfluid phase is absent due to the Mermin-Wagner the-
orem. Hence, naively we expect �c ! �1 in 1 + 1 dimen-
sions. An interesting question is whether this critical point
naturally describes the asymptotically-free fixed point of the
two dimensional O(3) sigma model. In this work we will ar-
gue that �c ! �1 is indeed a critical point since at that
point an extra U(1) symmetry emerges in our lattice model.
[HS: Why does emergence of an extra symmetry imply that this is a

critical point?] It is well known that a U(1) symmetry can be
present in a massless phase and we show this is the origin of
the critical point at �c ! �1.

III. WORLDLINE FORMULATION

In order to explore the physics of our qubit Hamiltonian,
we formulate it in the worldline approach and study it using
the worm algorithm. The partition function of our model Z =
Tr(e��H) can be expanded as

Z =
X

k

Z
[dtk...dt1]Tr

⇣
e�(��tk)H1(�H2)

e�(tk�tk�1)H1 · · · (�H2)e
�(t1)H1

⌘
. (9)

where we treat H1 as a free term and H2 as a perturbation.
However the integer k, which labels the number of insertions
of H2 terms, is allowed to take any value and hence the above
expansion is not an approximation. Inserting the expression
for H2 as a sum over nearest neighbor bond operators H�

b

(either Hh

r,i or Hp

r,i), we can rewrite the above expression as
sum over k bond configurations [b,�] at times t1, .., tk given
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FIG. 1. The zero temperature phase diagram of our qubit Hamilto-
nian. The top figure shows the phase structure in two and three spatial
dimensions, while the bottom figure shows the phase structure in one
spatial dimension.
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r,i are nearest neighbor bond opertors on
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the spatial dimensions. These bond operators act on a 16 di-
mensional nearest neighbor state space with the basis vectors
|s, ri|s, r0i, |s, ri|m, r0i, |m, ri|s, r0i and |m, ri|m0r0i. The
term Hh

r,i is the hopping part of the Hamiltonian and is given
by
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while Hp

r,r0 denotes the the pair creation-annihilation events
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For convenience we choose to work in the limit Jh = Jp =
J , although this restriction is not necessary to preserve the
symmetries of interest. In our calculations we choose a d-
dimensional regular periodic spatial lattice with L sites in each
direction.

The choice of our model is dictated by the requirement that
it helps us formulate the continuum O(3) sigma model. When
µ = 0, our model Eq. (1) is invariant under global SU(2)
transformations under which all qubits in the model trans-
forms as a spin half state. Under these transformations |s, ri
is invariant by definition and the three triplets |m, ri, m =
0,±1 transform under the spin-1 representation of SU(2),

|m, ri !
X

m0

D(1)
m,m0 |m0, ri, (8)

where D(1)
m,m0 are the SO(3) rotation matrices in the basis

which diagonalizes the z component of the generator of ro-
tations. It is then easy to see that all three terms Ht

r, Hh

r,i and
Hp

r,i are also invariant. In our work we introduce the chem-
ical potential term for purely algorithmic reasons to measure
the mass of the O(3) particles.

In order to understand how the continuum O(3) sigma
model can emerge from our qubit model, it is useful to un-
derstand its phase structure in terms of the dimensionless cou-
pling � = Jt/J (see Fig. 1). When � ! 1, the lattice
Hamiltonian is in a symmetric massive phase since the |m, ri
states are suppressed and the singlet states |s, ri dominate. On
the other hand when � ! �1, every space-time lattice site
contains the triplet state |m, ri, and this leads to the spon-
taneous breaking of the O(3) symmetry with two Goldstone
bosons. Assuming there is a second order quantum critical
point at some intermediate coupling �c, according to Wilson’s
renormalization group ideas, a continuum quantum field the-
ory must emerge close to �c on either side. Let us focus on
the theory for � > �c. Here, we obtain the symmetric massive
phase of the O(3) sigma model where we can use the mass
scale to set the lattice spacing. In 3+1 dimensions, this theory
will be free up to logarithmic corrections, while in 2 + 1 di-
mensions, the scaling will be described by the Wilson-Fisher
fixed point. The case of 1+1 dimensions is more subtle since
the superfluid phase is absent due to the Mermin-Wagner the-
orem. Hence, naively we expect �c ! �1 in 1 + 1 dimen-
sions. An interesting question is whether this critical point
naturally describes the asymptotically-free fixed point of the
two dimensional O(3) sigma model. In this work we will ar-
gue that �c ! �1 is indeed a critical point since at that
point an extra U(1) symmetry emerges in our lattice model.
[HS: Why does emergence of an extra symmetry imply that this is a

critical point?] It is well known that a U(1) symmetry can be
present in a massless phase and we show this is the origin of
the critical point at �c ! �1.

III. WORLDLINE FORMULATION

In order to explore the physics of our qubit Hamiltonian,
we formulate it in the worldline approach and study it using
the worm algorithm. The partition function of our model Z =
Tr(e��H) can be expanded as

Z =
X
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Z
[dtk...dt1]Tr

⇣
e�(��tk)H1(�H2)

e�(tk�tk�1)H1 · · · (�H2)e
�(t1)H1
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. (9)

where we treat H1 as a free term and H2 as a perturbation.
However the integer k, which labels the number of insertions
of H2 terms, is allowed to take any value and hence the above
expansion is not an approximation. Inserting the expression
for H2 as a sum over nearest neighbor bond operators H�

b

(either Hh

r,i or Hp

r,i), we can rewrite the above expression as
sum over k bond configurations [b,�] at times t1, .., tk given
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We can evaluate the trace in the singlet triplet representation
by inserting the complete set of states after every insertion of
the bond operator since it can be off diagonoal. This then
leads to a worldline configuration depicting the motion of
m = 0,±1 type particles in a Fock vacuum (s sites).

FIG. 2. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

For convenience we also discretize time into LT equal parts
with temporal extent " (that is, "LT = �) and map the world-
line configuration on a space-time lattice. The partition func-
tion then takes the form

Z =
X

[s,m]

Y

hiji

Whiji (11)

where [s,m] [HS: Why this notation?] is a lattice worldline con-
figuration and Whiji are weights associated with all space-
time bonds hiji. The configuration [s,m] is made up of vac-
uum sites where no particles are moving and sites where one
particle of the type m = 0,±1 is moving. Thus, configu-
rations are made up of empty sites (vacuum) or world lines
(of particles) that form loops. Figure 2 is an illustration of
a worldline configuration in 1 + 1 dimensions. Particle world
lines are shown with lines on the bonds connecting lattice sites
and vacuum sites are depicted as sites with filled circles. Each
particle worldline is a loop, that may be directed (depicting
m = ±1 particles) or undirected (depicting m = 0 type par-
ticles). A temporal bond that contains a m = +1 (m = �1)
particle worldline moving through it is depicted by an arrow
pointing in the positive (negative) time direction. The weights
Whiji can be computed by looking at the configuration on the
bond hiji. If the bond hiji is empty, i.e., does not contain a

particle world line, then Whiji = 1, otherwise it depends on
whether the bond is along a spatial direction or a temporal di-
rection. For convenience we define three weights Ws = "J ,
Wt = e�"Jt and Wµ = emµ". If the bond contains a particle
worldline but is along the spatial direction then Whiji = Ws,
but if it is along the temporal direction then Whiji = WtWµ.
The latter term also depends on the m-charge of the particle
on the temporal bond.

FIG. 3. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

In order to study the physics of our model and establish
that we do indeed reproduce the expected physics of the O(3)
sigma model we focus on four observables.

1. The first is the average density of vacuum sites v which
we define as

v =
1

Z
Tr

⇣ 1

Ld

X

r

P s

r e
��H

⌘
(12)

In the space-time lattice formulation this turns out to be
just the denisity of vacuum sites and easily computed in
each [s,m] configuration.

2. The second observable is the average m-charge defined
as

hQi =
1

Z
Tr

⇣X

r

Qre
��H

⌘
. (13)

In each worldline configuration the m-charge Qr is a
conserved quantity and does not change in time and can
be easily computed. When µ = 0 we expect hQi = 0
due to the SO(3) symmetry. However, as µ increases
hQi will increase and cross 0.5 at a critical coupling
µc. In the massive phase when �, L ! 1 this critical
coupling gives the mass of the O(3) particles.

3. The third observable is the superfluid density ⇢s defined
as the O(3) conserved current susceptibility. One can
compute it using the conserved charge Qw along one of

Ws = "J
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We can evaluate the trace in the singlet triplet representation
by inserting the complete set of states after every insertion of
the bond operator since it can be off diagonoal. This then
leads to a worldline configuration depicting the motion of
m = 0,±1 type particles in a Fock vacuum (s sites).

FIG. 2. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

For convenience we also discretize time into LT equal parts
with temporal extent " (that is, "LT = �) and map the world-
line configuration on a space-time lattice. The partition func-
tion then takes the form

Z =
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where [s,m] [HS: Why this notation?] is a lattice worldline con-
figuration and Whiji are weights associated with all space-
time bonds hiji. The configuration [s,m] is made up of vac-
uum sites where no particles are moving and sites where one
particle of the type m = 0,±1 is moving. Thus, configu-
rations are made up of empty sites (vacuum) or world lines
(of particles) that form loops. Figure 2 is an illustration of
a worldline configuration in 1 + 1 dimensions. Particle world
lines are shown with lines on the bonds connecting lattice sites
and vacuum sites are depicted as sites with filled circles. Each
particle worldline is a loop, that may be directed (depicting
m = ±1 particles) or undirected (depicting m = 0 type par-
ticles). A temporal bond that contains a m = +1 (m = �1)
particle worldline moving through it is depicted by an arrow
pointing in the positive (negative) time direction. The weights
Whiji can be computed by looking at the configuration on the
bond hiji. If the bond hiji is empty, i.e., does not contain a

particle world line, then Whiji = 1, otherwise it depends on
whether the bond is along a spatial direction or a temporal di-
rection. For convenience we define three weights Ws = "J ,
Wt = e�"Jt and Wµ = emµ". If the bond contains a particle
worldline but is along the spatial direction then Whiji = Ws,
but if it is along the temporal direction then Whiji = WtWµ.
The latter term also depends on the m-charge of the particle
on the temporal bond.

FIG. 3. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

In order to study the physics of our model and establish
that we do indeed reproduce the expected physics of the O(3)
sigma model we focus on four observables.

1. The first is the average density of vacuum sites v which
we define as

v =
1

Z
Tr

⇣ 1

Ld

X

r

P s

r e
��H

⌘
(12)

In the space-time lattice formulation this turns out to be
just the denisity of vacuum sites and easily computed in
each [s,m] configuration.

2. The second observable is the average m-charge defined
as

hQi =
1
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In each worldline configuration the m-charge Qr is a
conserved quantity and does not change in time and can
be easily computed. When µ = 0 we expect hQi = 0
due to the SO(3) symmetry. However, as µ increases
hQi will increase and cross 0.5 at a critical coupling
µc. In the massive phase when �, L ! 1 this critical
coupling gives the mass of the O(3) particles.

3. The third observable is the superfluid density ⇢s defined
as the O(3) conserved current susceptibility. One can
compute it using the conserved charge Qw along one of
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spatial dimension.

where Hh

r,i and Hp

r,i are nearest neighbor bond opertors on
the link connecting the site r and r+ î where i = 1, 2.., d are
the spatial dimensions. These bond operators act on a 16 di-
mensional nearest neighbor state space with the basis vectors
|s, ri|s, r0i, |s, ri|m, r0i, |m, ri|s, r0i and |m, ri|m0r0i. The
term Hh
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For convenience we choose to work in the limit Jh = Jp =
J , although this restriction is not necessary to preserve the
symmetries of interest. In our calculations we choose a d-
dimensional regular periodic spatial lattice with L sites in each
direction.

The choice of our model is dictated by the requirement that
it helps us formulate the continuum O(3) sigma model. When
µ = 0, our model Eq. (1) is invariant under global SU(2)
transformations under which all qubits in the model trans-
forms as a spin half state. Under these transformations |s, ri
is invariant by definition and the three triplets |m, ri, m =
0,±1 transform under the spin-1 representation of SU(2),
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which diagonalizes the z component of the generator of ro-
tations. It is then easy to see that all three terms Ht
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r,i and
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r,i are also invariant. In our work we introduce the chem-
ical potential term for purely algorithmic reasons to measure
the mass of the O(3) particles.

In order to understand how the continuum O(3) sigma
model can emerge from our qubit model, it is useful to un-
derstand its phase structure in terms of the dimensionless cou-
pling � = Jt/J (see Fig. 1). When � ! 1, the lattice
Hamiltonian is in a symmetric massive phase since the |m, ri
states are suppressed and the singlet states |s, ri dominate. On
the other hand when � ! �1, every space-time lattice site
contains the triplet state |m, ri, and this leads to the spon-
taneous breaking of the O(3) symmetry with two Goldstone
bosons. Assuming there is a second order quantum critical
point at some intermediate coupling �c, according to Wilson’s
renormalization group ideas, a continuum quantum field the-
ory must emerge close to �c on either side. Let us focus on
the theory for � > �c. Here, we obtain the symmetric massive
phase of the O(3) sigma model where we can use the mass
scale to set the lattice spacing. In 3+1 dimensions, this theory
will be free up to logarithmic corrections, while in 2 + 1 di-
mensions, the scaling will be described by the Wilson-Fisher
fixed point. The case of 1+1 dimensions is more subtle since
the superfluid phase is absent due to the Mermin-Wagner the-
orem. Hence, naively we expect �c ! �1 in 1 + 1 dimen-
sions. An interesting question is whether this critical point
naturally describes the asymptotically-free fixed point of the
two dimensional O(3) sigma model. In this work we will ar-
gue that �c ! �1 is indeed a critical point since at that
point an extra U(1) symmetry emerges in our lattice model.
[HS: Why does emergence of an extra symmetry imply that this is a

critical point?] It is well known that a U(1) symmetry can be
present in a massless phase and we show this is the origin of
the critical point at �c ! �1.

III. WORLDLINE FORMULATION

In order to explore the physics of our qubit Hamiltonian,
we formulate it in the worldline approach and study it using
the worm algorithm. The partition function of our model Z =
Tr(e��H) can be expanded as

Z =
X

k

Z
[dtk...dt1]Tr

⇣
e�(��tk)H1(�H2)

e�(tk�tk�1)H1 · · · (�H2)e
�(t1)H1

⌘
. (9)

where we treat H1 as a free term and H2 as a perturbation.
However the integer k, which labels the number of insertions
of H2 terms, is allowed to take any value and hence the above
expansion is not an approximation. Inserting the expression
for H2 as a sum over nearest neighbor bond operators H�

b

(either Hh

r,i or Hp

r,i), we can rewrite the above expression as
sum over k bond configurations [b,�] at times t1, .., tk given

2

λ

λ

∞

∞

λ

λc

c

massivesuperfluid

massive, asymptotically free

d=2,3

d=1

-∞

-∞

FIG. 1. The zero temperature phase diagram of our qubit Hamilto-
nian. The top figure shows the phase structure in two and three spatial
dimensions, while the bottom figure shows the phase structure in one
spatial dimension.

where Hh

r,i and Hp

r,i are nearest neighbor bond opertors on
the link connecting the site r and r+ î where i = 1, 2.., d are
the spatial dimensions. These bond operators act on a 16 di-
mensional nearest neighbor state space with the basis vectors
|s, ri|s, r0i, |s, ri|m, r0i, |m, ri|s, r0i and |m, ri|m0r0i. The
term Hh

r,i is the hopping part of the Hamiltonian and is given
by

Hh

r,r0 =
X

m

n
|s, ri|m, r0ihm, r|hs, r0|

+ |m, ri|s, r0ihs, r|hm, r0|
o

(6)

while Hp

r,r0 denotes the the pair creation-annihilation events
and takes the explicit form

Hp

r,r0 =
X

m

(�1)m
n
|m, ri|�m, r0ihs, r|hs, r0|

+ |s, ri|s, r0ihm, r|h�m, r0|
o

(7)

For convenience we choose to work in the limit Jh = Jp =
J , although this restriction is not necessary to preserve the
symmetries of interest. In our calculations we choose a d-
dimensional regular periodic spatial lattice with L sites in each
direction.

The choice of our model is dictated by the requirement that
it helps us formulate the continuum O(3) sigma model. When
µ = 0, our model Eq. (1) is invariant under global SU(2)
transformations under which all qubits in the model trans-
forms as a spin half state. Under these transformations |s, ri
is invariant by definition and the three triplets |m, ri, m =
0,±1 transform under the spin-1 representation of SU(2),

|m, ri !
X

m0

D(1)
m,m0 |m0, ri, (8)

where D(1)
m,m0 are the SO(3) rotation matrices in the basis

which diagonalizes the z component of the generator of ro-
tations. It is then easy to see that all three terms Ht

r, Hh

r,i and
Hp

r,i are also invariant. In our work we introduce the chem-
ical potential term for purely algorithmic reasons to measure
the mass of the O(3) particles.

In order to understand how the continuum O(3) sigma
model can emerge from our qubit model, it is useful to un-
derstand its phase structure in terms of the dimensionless cou-
pling � = Jt/J (see Fig. 1). When � ! 1, the lattice
Hamiltonian is in a symmetric massive phase since the |m, ri
states are suppressed and the singlet states |s, ri dominate. On
the other hand when � ! �1, every space-time lattice site
contains the triplet state |m, ri, and this leads to the spon-
taneous breaking of the O(3) symmetry with two Goldstone
bosons. Assuming there is a second order quantum critical
point at some intermediate coupling �c, according to Wilson’s
renormalization group ideas, a continuum quantum field the-
ory must emerge close to �c on either side. Let us focus on
the theory for � > �c. Here, we obtain the symmetric massive
phase of the O(3) sigma model where we can use the mass
scale to set the lattice spacing. In 3+1 dimensions, this theory
will be free up to logarithmic corrections, while in 2 + 1 di-
mensions, the scaling will be described by the Wilson-Fisher
fixed point. The case of 1+1 dimensions is more subtle since
the superfluid phase is absent due to the Mermin-Wagner the-
orem. Hence, naively we expect �c ! �1 in 1 + 1 dimen-
sions. An interesting question is whether this critical point
naturally describes the asymptotically-free fixed point of the
two dimensional O(3) sigma model. In this work we will ar-
gue that �c ! �1 is indeed a critical point since at that
point an extra U(1) symmetry emerges in our lattice model.
[HS: Why does emergence of an extra symmetry imply that this is a

critical point?] It is well known that a U(1) symmetry can be
present in a massless phase and we show this is the origin of
the critical point at �c ! �1.

III. WORLDLINE FORMULATION

In order to explore the physics of our qubit Hamiltonian,
we formulate it in the worldline approach and study it using
the worm algorithm. The partition function of our model Z =
Tr(e��H) can be expanded as

Z =
X

k

Z
[dtk...dt1]Tr

⇣
e�(��tk)H1(�H2)

e�(tk�tk�1)H1 · · · (�H2)e
�(t1)H1

⌘
. (9)

where we treat H1 as a free term and H2 as a perturbation.
However the integer k, which labels the number of insertions
of H2 terms, is allowed to take any value and hence the above
expansion is not an approximation. Inserting the expression
for H2 as a sum over nearest neighbor bond operators H�

b

(either Hh

r,i or Hp

r,i), we can rewrite the above expression as
sum over k bond configurations [b,�] at times t1, .., tk given
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by

Z =
X

k

Z
[dtk...dt1]

X

[b,�]

Tr
⇣
e�(��tk)H1(�H�k

bk
)

e�(tk�tk�1)H1 · · · (�H�1
b1
)e�(t1)H1

⌘
.

(10)

We can evaluate the trace in the singlet triplet representation
by inserting the complete set of states after every insertion of
the bond operator since it can be off diagonoal. This then
leads to a worldline configuration depicting the motion of
m = 0,±1 type particles in a Fock vacuum (s sites).

FIG. 2. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

For convenience we also discretize time into LT equal parts
with temporal extent " (that is, "LT = �) and map the world-
line configuration on a space-time lattice. The partition func-
tion then takes the form

Z =
X

[s,m]

Y

hiji

Whiji (11)

where [s,m] [HS: Why this notation?] is a lattice worldline con-
figuration and Whiji are weights associated with all space-
time bonds hiji. The configuration [s,m] is made up of vac-
uum sites where no particles are moving and sites where one
particle of the type m = 0,±1 is moving. Thus, configu-
rations are made up of empty sites (vacuum) or world lines
(of particles) that form loops. Figure 2 is an illustration of
a worldline configuration in 1 + 1 dimensions. Particle world
lines are shown with lines on the bonds connecting lattice sites
and vacuum sites are depicted as sites with filled circles. Each
particle worldline is a loop, that may be directed (depicting
m = ±1 particles) or undirected (depicting m = 0 type par-
ticles). A temporal bond that contains a m = +1 (m = �1)
particle worldline moving through it is depicted by an arrow
pointing in the positive (negative) time direction. The weights
Whiji can be computed by looking at the configuration on the
bond hiji. If the bond hiji is empty, i.e., does not contain a

particle world line, then Whiji = 1, otherwise it depends on
whether the bond is along a spatial direction or a temporal di-
rection. For convenience we define three weights Ws = "J ,
Wt = e�"Jt and Wµ = emµ". If the bond contains a particle
worldline but is along the spatial direction then Whiji = Ws,
but if it is along the temporal direction then Whiji = WtWµ.
The latter term also depends on the m-charge of the particle
on the temporal bond.

FIG. 3. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

In order to study the physics of our model and establish
that we do indeed reproduce the expected physics of the O(3)
sigma model we focus on four observables.

1. The first is the average density of vacuum sites v which
we define as

v =
1

Z
Tr

⇣ 1

Ld

X

r

P s

r e
��H

⌘
(12)

In the space-time lattice formulation this turns out to be
just the denisity of vacuum sites and easily computed in
each [s,m] configuration.

2. The second observable is the average m-charge defined
as

hQi =
1

Z
Tr

⇣X

r

Qre
��H

⌘
. (13)

In each worldline configuration the m-charge Qr is a
conserved quantity and does not change in time and can
be easily computed. When µ = 0 we expect hQi = 0
due to the SO(3) symmetry. However, as µ increases
hQi will increase and cross 0.5 at a critical coupling
µc. In the massive phase when �, L ! 1 this critical
coupling gives the mass of the O(3) particles.

3. The third observable is the superfluid density ⇢s defined
as the O(3) conserved current susceptibility. One can
compute it using the conserved charge Qw along one of

Ws = "J
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� =
1

ZLd

X

r,r0

Z �

0
dt Tr

⇣
e�(��t)Har,me

�tHa†r0,m

⌘
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lattice rotations. Thus, by setting " = 1 and exp(�"Jt) = "J
we are guaranteed that the quantum critical point obtained by
tuning J will indeed be relativistically invariant. We refer to
this as the relativistic limit of our qubit model.

From the perspective of a qubit formulation of quantum
field theories on a quantum computer, we are more interested
in the Hamiltonian limit where " vanishes. As stated above,
in this limit there is no symmetry between space and time and
it is more difficult to argue that we will recover relativistic in-
variance near the quantum critical point. However, given that
our model has a quantum critical point in the relativistic limit
it very likely that this critical point survives in the Hamiltonian
limit. We can in principle formulate an algorithm directly in
the time continuum limit (" ! 0) and study this limit by set-
ting J = 1 and varying � = Jt/J . However, for convenience
in this work we choose " = 0.1 in our computations and refer
to them as the Hamiltonian limit results.

FIG. 3. Illustration of a worldline configuration in one spatial dimen-
sion. The sites with circles depict the Fock vacuum (singlets)

V. OBSERVABLES

In order to study the physics of our model and establish
that we do indeed reproduce the expected physics of the O(3)
sigma model we focus on four observables.

1. The first is the average density of vacuum sites v which
we define as

v =
1

Z
Tr

⇣ 1

Ld

X

r

P s

r e
��H

⌘
(13)

In the space-time lattice formulation this turns out to be
just the denisity of vacuum sites and easily computed in
each [s,m] configuration.

2. The second observable is the average m-charge defined
as

hQi =
1

Z
Tr

⇣X

r

Qre
��H

⌘
. (14)

In each worldline configuration the m-charge Qr is a
conserved quantity and does not change in time and can
be easily computed. When µ = 0 we expect hQi = 0
due to the SO(3) symmetry. However, as µ increases
hQi will increase and cross 0.5 at a critical coupling
µc. In the massive phase when �, L ! 1 this critical
coupling gives the mass of the O(3) particles.

3. The third observable is the superfluid density ⇢s defined
as the O(3) conserved current susceptibility. One can
compute it using the conserved charge Qw along one of
the spatial directions for every worldline configuration,
using the formula

⇢s =
1

Ld�2�
hQ2

w
i, (15)

where the average is computed in the worldline formu-
lation.

4. Our final observable is the susceptibility of the two
point correlation function involving the creation and an-
nihilation of particles. This is given by

� =
1

ZLd

X

r,r0

Z
�

0
dt Tr

⇣
e�(��t)Har,me�tHa†r0,m

⌘

(16)

where a†r,m = |m, rihs, r| and ar,m = |s, rihm, r|.
Computing � is straight forward in the worldline ap-
proach using the worm algorithm since the worm up-
dates sample configurations with a creation and anni-
hilation event. One such configuration is illustrated in
Fig. 3.

VI. THE O(3) MODEL

The |mi (m = 0,±1) states transform in the fundamental
representation of O(3). We will show that our model has a
critical point at some � = �c, which we show to lie in the
O(3) universality class for d = 2, and the Gaussian [HS: is that
the correct word?] universality class for d = 3, as expected for
the continuum O(3) sigma model.

We study our qubit model in both the Relativistic and
Hamiltonian limits in d = 3 and 2 to show that we reproduce
the results expected from traditional models near the quantum
critical points.

A. d = 2

In d = 2 the main result to show is that we can reproduce
the physics of the Wilson-Fisher fixed point. This implies that
in the relativistic limit, near the quantum critical point we ex-
pect

⇢sL = f((J � Jc)L
1/⌫), (17)

�/L2�⌘ = g((J � Jc)L
1/⌫), (18)



� =
1

ZLd

X

r,r0

Z �

0
dt Tr

⇣
e�(��t)Har,me

�tHa†r0,m

⌘
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lattice rotations. Thus, by setting " = 1 and exp(�"Jt) = "J
we are guaranteed that the quantum critical point obtained by
tuning J will indeed be relativistically invariant. We refer to
this as the relativistic limit of our qubit model.

From the perspective of a qubit formulation of quantum
field theories on a quantum computer, we are more interested
in the Hamiltonian limit where " vanishes. As stated above,
in this limit there is no symmetry between space and time and
it is more difficult to argue that we will recover relativistic in-
variance near the quantum critical point. However, given that
our model has a quantum critical point in the relativistic limit
it very likely that this critical point survives in the Hamiltonian
limit. We can in principle formulate an algorithm directly in
the time continuum limit (" ! 0) and study this limit by set-
ting J = 1 and varying � = Jt/J . However, for convenience
in this work we choose " = 0.1 in our computations and refer
to them as the Hamiltonian limit results.
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V. OBSERVABLES

In order to study the physics of our model and establish
that we do indeed reproduce the expected physics of the O(3)
sigma model we focus on four observables.

1. The first is the average density of vacuum sites v which
we define as

v =
1

Z
Tr

⇣ 1

Ld

X

r

P s

r e
��H

⌘
(13)

In the space-time lattice formulation this turns out to be
just the denisity of vacuum sites and easily computed in
each [s,m] configuration.

2. The second observable is the average m-charge defined
as

hQi =
1

Z
Tr

⇣X

r

Qre
��H

⌘
. (14)

In each worldline configuration the m-charge Qr is a
conserved quantity and does not change in time and can
be easily computed. When µ = 0 we expect hQi = 0
due to the SO(3) symmetry. However, as µ increases
hQi will increase and cross 0.5 at a critical coupling
µc. In the massive phase when �, L ! 1 this critical
coupling gives the mass of the O(3) particles.

3. The third observable is the superfluid density ⇢s defined
as the O(3) conserved current susceptibility. One can
compute it using the conserved charge Qw along one of
the spatial directions for every worldline configuration,
using the formula

⇢s =
1

Ld�2�
hQ2

w
i, (15)

where the average is computed in the worldline formu-
lation.

4. Our final observable is the susceptibility of the two
point correlation function involving the creation and an-
nihilation of particles. This is given by

� =
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ZLd

X

r,r0

Z
�

0
dt Tr

⇣
e�(��t)Har,me�tHa†r0,m

⌘

(16)

where a†r,m = |m, rihs, r| and ar,m = |s, rihm, r|.
Computing � is straight forward in the worldline ap-
proach using the worm algorithm since the worm up-
dates sample configurations with a creation and anni-
hilation event. One such configuration is illustrated in
Fig. 3.

VI. THE O(3) MODEL

The |mi (m = 0,±1) states transform in the fundamental
representation of O(3). We will show that our model has a
critical point at some � = �c, which we show to lie in the
O(3) universality class for d = 2, and the Gaussian [HS: is that
the correct word?] universality class for d = 3, as expected for
the continuum O(3) sigma model.

We study our qubit model in both the Relativistic and
Hamiltonian limits in d = 3 and 2 to show that we reproduce
the results expected from traditional models near the quantum
critical points.

A. d = 2

In d = 2 the main result to show is that we can reproduce
the physics of the Wilson-Fisher fixed point. This implies that
in the relativistic limit, near the quantum critical point we ex-
pect

⇢sL = f((J � Jc)L
1/⌫), (17)

�/L2�⌘ = g((J � Jc)L
1/⌫), (18)

Winding Number Susceptibility

⇢s =
1

Ld�2�

⌦
(Qw )
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FIG. 4. O(3) qubit model in d = 2: Plots of ⇢sL and �/L
2�⌘ as a function of (J � Jc)L

1/⌫ int the relativistic limit (top row) and as a
function of (���c)L

1/⌫ (bottom row) for the Hamiltonian limit. The solid black line shows the combined fit in each case assuming that f(x)
and g(x) in Eq. (18) can be approximated by a polynomial up to third order.[HS: The L = 112 case has taken over 13 days now.]

where f(x) and g(x) are universal functions and ⌫ =
0.7113(11), ⌘ = 0.0378(6) are the well known critical ex-
ponents for the O(3) model that have been obtained earlier
using the traditional model [26]. If we assume that f(x) and
g(x) are given by a third order polynomials, we find that we
can fit our data for both ⇢s and � to Eq. (18) very well in the
region 0.242  J  0.246 and L � 48, 64, 96. We obtain
the fit parameters as Jc = 0.244328(19), ⌫ = 0.721(19) and
⌘ � 0.031(18) which are in excellent agreement with earlier
calculations of Ref. [26]. In the top row of Fig. 4 we plot ⇢sL
and �/L2�⌘ as a function of (J � Jc)L1/⌫ and show our fit.

We have repeated the above analysis in the Hamiltonian

limit by fixing " = 0.1 and varying �. In order to mimic
cubical boxes we choose � = L, which means the number
of temporal lattice sites now are ten times larger. This makes
these computations more time consuming. For this reason we
have only explored lattices up to L = 64. Still near the quan-
tum critical point we again expect our data to satisfy the crit-
ical scaling relations given in Eq. (18) where J is replaced
by �. We again get excellent fits as shown in the bottom
row of Fig. 4. In this case we obtain �c = 4.81604(91),
⌫ = 0.711(11) and ⌘ = 0.033(24).

These results provide strong evidence that the Wilson-
Fisher fixed point of the O(3) scalar field theory can be ob-
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L
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where f(x) and g(x) are universal functions and ⌫ =
0.7113(11), ⌘ = 0.0378(6) are the well known critical ex-
ponents for the O(3) model that have been obtained earlier
using the traditional model [26]. If we assume that f(x) and
g(x) are given by a third order polynomials, we find that we
can fit our data for both ⇢s and � to Eq. (18) very well in the
region 0.242  J  0.246 and L � 48, 64, 96. We obtain
the fit parameters as Jc = 0.244328(19), ⌫ = 0.721(19) and
⌘ � 0.031(18) which are in excellent agreement with earlier
calculations of Ref. [26]. In the top row of Fig. 4 we plot ⇢sL
and �/L2�⌘ as a function of (J � Jc)L1/⌫ and show our fit.

We have repeated the above analysis in the Hamiltonian

limit by fixing " = 0.1 and varying �. In order to mimic
cubical boxes we choose � = L, which means the number
of temporal lattice sites now are ten times larger. This makes
these computations more time consuming. For this reason we
have only explored lattices up to L = 64. Still near the quan-
tum critical point we again expect our data to satisfy the crit-
ical scaling relations given in Eq. (18) where J is replaced
by �. We again get excellent fits as shown in the bottom
row of Fig. 4. In this case we obtain �c = 4.81604(91),
⌫ = 0.711(11) and ⌘ = 0.033(24).

These results provide strong evidence that the Wilson-
Fisher fixed point of the O(3) scalar field theory can be ob-
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We see the Gaussian fixed point in d=3+1. We also see asymptotic 
freedom in d=1+1 but with caveats!
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As discussed in the supplementary material, when ⌃ =
S
2(r0), the eom (7) admits di↵erent branches of smooth

solutions, parameterized by an integer ` which counts the
zeros of p(r). The energy is minimal in the first non-trivial
branch (` = 1), where 2  r

2
0⇤

2
< 6. Here the integral of

the divergence can be computed numerically in terms of
an expansion in |jl � jr|/jm to give

1

4⇡

Z

S2

d⌦ (rp)2 =
|jl � jr|

jm
+�2

✓
|jl � jr|

jm

◆2

+ . . . (9)

with �2 ⇡ 0.2455. This is the leading contribution in the
large-charge expansion. There will be in general higher-
order corrections suppressed by inverse powers of the large
charges due to sub-leading terms in the tree-level action
in Eq. (1) and to quantum corrections.

There is only one term of order O
�
j
0
�
: the Casimir

energy of the Goldstones resulting from the spontaneous
symmetry breaking SO(3)⇥D ⇥ SO(2)2 ! SO(2)⇥D

0

discussed in the supplementary material. The two broken
generators of the isometries on the sphere only give rise
to one Goldstone degree of freedom (dof). Together with
the 2 dof from the broken internal symmetries, they
are arranged into one type-I and one type-II Goldstone
field in the notation of [24]. Only the former contributes
to the Casimir energy as E0 = ⇣(�1/2|S1)/(2

p
2). The

zero-point energy is di↵erent from the one in the (j, j)
sector because the low-energy excitations only propagate
in the direction of the unbroken sphere isometry. Once
again we can use the state/operator correspondence and
obtain the final formula for the conformal dimension of
the lowest operator in the representation (jl, jr) of SO(4)
when jl 6= jr:

D(jl, jr) =

r
2j3m
⇡

"
c3/2 + c1/2

2⇡

jm
+

1

3c3/2

 
|jl � jr|

jm
+ �2

(jl � jr)
2

j2m

+ . . .

!
2⇡

jm
+ . . .

#
�

1

12
p
2
. (10)

As we have stressed, the conformal dimensions only de-
pend on the two Wilsonian couplings c3/2 and c1/2, which
are the same coe�cients that appear in Eq. (5) for the
jl = jr case. We now explain how we determine them
using mc methods with our lattice model.

FIG. 2. Illustration of an O(4) worldline configuration in
two dimensions. The solid circles represent vacuum sites,
each of which have a weight U . All other sites have a single
O(4) particle with charge (ql, qr) = (±1/2,±1/2) moving in
space-time.

LATTICE SIMULATIONS

Our lattice model was first introduced in Ref. [18] as
a model for pion physics in two-flavor qcd and studied
with an e�cient mc algorithm. It is constructed using
four Grassmann fields  ↵(x), ↵(x),↵ = 1, 2 at every
three-dimensional periodic cubic lattice site x = (r, t) of
size L in all the directions. If we arrange these four-fields
into a 2 ⇥ 2 matrix of the form g↵�(x) =  ↵ � we can
write the lattice action as

S = �

X

hxyi

Tr(gxgy)�
U

2

X

x

det(gx), (11)

where hxyi are nearest-neighbor bonds. This action is
invariant under the SU(2)⇥SU(2) transformations gx !

VlgxV
�1
r on odd sites and gx ! VrgxV

�1
l on even sites.

The partition function of the model can be expressed as a
sum over configurations where each site either contains a
vacuum site or a worldline of an O(4) particle in the vector
representation. Thus, each worldline has four possible
states that label the eigenvalues (ql, qr) = (±1/2,±1/2)
of particles that travel through the sites. These can be
thought of as oriented loops with two colors (say red
and green). An illustration of a configuration is shown
in Fig. 2.
The weight of a worldline configuration is given by

U
Nm where Nm is the number of vacuum sites. As U is

tuned, the model undergoes a phase transition between
the massive symmetric phase at large values to a phase
where the O(4) symmetry is spontaneously broken at

Needs five states per lattice site.

Every monomer has weight U
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FIG. 3. The critical scaling plots of ⇢sL (circles) and �L
2�⌘

as a function of the scaling variable (U � Uc)L
1/⌫ . The solid

lines show the goodness of the combined fit of all the data
shown to polynomials to fourth order.

small values. Using well-established mc methods [18,
19] we first demonstrate that at the critical point we
obtain the O(4) Wilson–Fisher cft by computing the
critical exponents ⌫ and ⌘. For this purpose we compute
the current susceptibility ⇢s and the order parameter
susceptibility �, details of which can be found in the
Supplementary Material. Finite-size scaling theory near
a second-order phase transition predicts that ⇢sL and
�L

2�⌘ must be simple polynomials of (U � Uc)L1/⌫ . A
combined fit of our data gives Uc = 1.655394(3), ⌫ =
0.746(3) and ⌘ = 0.0353(10). In Fig. 3 we plot our data
and the fit. These exponents are in excellent agreement
with earlier results, ⌫ = 0.749(2) and ⌘ = 0.0365(10),
obtained from the traditional lattice model [25].

Having established that our lattice model indeed re-
produces the O(4) cft when U = Uc, we can use the
method we developed in Ref. [12] to accurately compute
the conformal dimensions D(j, j) at the O(4) cft. We
can create configurations in a specific (jl, jr) sector by
placing appropriately charged sources and sinks at t = 0
and t = L/2 respectively. More concretely, sources that
create a red loop are assigned the charge (1/2, 1/2) and
the sinks that annihilate them are assigned the charge
(�1/2,�1/2). Similarly, those that create and annihi-
late the green loops are assigned charges (1/2,�1/2) and
(�1/2, 1/2). Using these fundamental sources we can con-
struct sources and sinks with any charge (ql, qr). However,
since each site can only have one red or one green source,
to create a source with a large charge we distribute the
fundamental sources in a local region near the origin (see
Supplementary Material for more details). Since the cou-
plings c3/2 and c1/2 can be computed by fitting the data

j D(j, j) j D(j, j)
(this work) (from [26]) (this work) (from [26])

1/2 0.515(3) 0.5180(3) 1 1.185(4) 1.1855(5)
3/2 1.989(5) 1.9768(10) 2 2.915(6) 2.875(5)
5/2 3.945(6) - 3 5.069(7) -
7/2 6.284(8) - 4 7.575(9) -
9/2 8.949(10) - 5 10.386(11) -

TABLE I. Results for the conformal dimensions D(j, j) up
to j = 5 computed using worldline mc methods in this work
(second and fifth column). We also compare our results with
earlier calculations up to j = 2 found in [26].

for D(j, j) to the predicted form in (5), in this work we
only study the sector with jl = jr = j, j = 1/2, 1, 3/2, . . . .
For this purpose we only work with sources and sinks
of equal charges by creating 2j sources of red loops at
t = 0 and annihilating them at t = L/2. This naturally
projects us into the highest-weight representation sector
with jl = jr = j. Let Zj(L) be the partition function
in the presence of these sources and sinks. In Ref. [12]
we developed an e�cient algorithm to compute the ratio
Rj(L) = Zj(L)/Zj�1/2(L), which is expected to scale as

C/L
2�(j) for large values of L. By evaluating Rj(L) for

various values of j, L and fitting to the expected form we
can accurately compute the di↵erence in the conformal
dimensions �(j) = D(j, j)�D(j � 1/2, j � 1/2). From
these di↵erences we can also estimate D(j, j), since con-
formal invariance fixes D(0, 0) = 0. Our final results are
tabulated in Table I up to j = 5. As the table shows,
our results are also in good agreement with earlier calcu-
lations up to j = 2 [26]. Fitting the data in Table I to
the large j form in Eq. (5) we obtain c3/2 = 1.068(4) and
c1/2 = 0.083(3) (see Fig. 1).

CONCLUSIONS

In this letter we provide a new prediction for the anoma-
lous dimensions D(jl, jr) (see (10)) at the O(4) Wilson–
Fisher fixed point in terms of the two couplings that
appear in the fixed large-charge e↵ective action (1). Our
prediction is valid in the limit of large (jl, jr) and small
|jl � jr|/max(jl, jr). We then use a discrete lattice O(4)
model to compute the two couplings by fitting the data
for D(j, j) to the prediction in Eq. (5) obtained from an
earlier work. We also demonstrate that this prediction
provides an excellent approximation even at small val-
ues of j (see Fig. 1). Our estimate c3/2 = 1.068(4) and
c1/2 = 0.083(3) can be used in (10) to predict D(jl, jr)
even for jl 6= jr. While our lattice model can in principle
be used to check the validity of these predictions, our
method is likely to su↵er from signal to noise ratio prob-
lems when jl and jr are su�ciently large and di↵erent.
Discrete lattice models like ours can in principle also be
designed for other non-Abelian symmetry groups, thus

Uc = 1.655394(3)

⌫ = 0.746(3), ⌘ = 0.0353(10)
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in the presence of these sources and sinks. In Ref. [12]
we developed an e�cient algorithm to compute the ratio
Rj(L) = Zj(L)/Zj�1/2(L), which is expected to scale as

C/L
2�(j) for large values of L. By evaluating Rj(L) for

various values of j, L and fitting to the expected form we
can accurately compute the di↵erence in the conformal
dimensions �(j) = D(j, j)�D(j � 1/2, j � 1/2). From
these di↵erences we can also estimate D(j, j), since con-
formal invariance fixes D(0, 0) = 0. Our final results are
tabulated in Table I up to j = 5. As the table shows,
our results are also in good agreement with earlier calcu-
lations up to j = 2 [26]. Fitting the data in Table I to
the large j form in Eq. (5) we obtain c3/2 = 1.068(4) and
c1/2 = 0.083(3) (see Fig. 1).

CONCLUSIONS

In this letter we provide a new prediction for the anoma-
lous dimensions D(jl, jr) (see (10)) at the O(4) Wilson–
Fisher fixed point in terms of the two couplings that
appear in the fixed large-charge e↵ective action (1). Our
prediction is valid in the limit of large (jl, jr) and small
|jl � jr|/max(jl, jr). We then use a discrete lattice O(4)
model to compute the two couplings by fitting the data
for D(j, j) to the prediction in Eq. (5) obtained from an
earlier work. We also demonstrate that this prediction
provides an excellent approximation even at small val-
ues of j (see Fig. 1). Our estimate c3/2 = 1.068(4) and
c1/2 = 0.083(3) can be used in (10) to predict D(jl, jr)
even for jl 6= jr. While our lattice model can in principle
be used to check the validity of these predictions, our
method is likely to su↵er from signal to noise ratio prob-
lems when jl and jr are su�ciently large and di↵erent.
Discrete lattice models like ours can in principle also be
designed for other non-Abelian symmetry groups, thus
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We study the O(4) Wilson–Fisher fixed point in 2 + 1 dimensions in fixed large-charge sectors
identified by products of two spin-j representations (jl, jr). Using e↵ective field theory we derive a
formula for the conformal dimensions D(jl, jr) of the leading operator in terms of two constants, c3/2
and c1/2, when the sum jl + jr is much larger than the di↵erence |jl � jr|. We compute D(jl, jr)
when jl = jr with Monte Carlo calculations in a discrete formulation of the O(4) lattice field
theory, and show excellent agreement with the predicted formula and estimate c3/2 = 1.068(4) and
c1/2 = 0.083(3).

INTRODUCTION

Conformal field theory (cft) holds a central place in
the study of quantum field theory (qft), as it is relevant
to both particle physics and condensed matter systems at
criticality, and via the gauge/gravity correspondence even
to the description of quantum gravity. Generically, cfts
do not contain any small couplings that can be used in a
perturbative analysis. However, the conformal symmetry
constrains its observables such that we can determine any
n-point function using only operator dimensions and three-
point function coe�cients. While it is possible to treat
strongly coupled theories with methods such as the large-
N expansion, the ✏-expansion (see [1] for a review) and
the conformal bootstrap [2], they are notoriously di�cult
to access analytically. In simple cases, Monte Carlo (mc)
techniques o↵er a reliable numerical alternative [3, 4].

Recently, it has been shown in a series of papers [5–10]
that working in a sector of large global charge results in im-
portant simplifications and gives us a perturbative handle
to study cfts using e↵ective field theories (efts): it is pos-
sible to write an e↵ective action as an expansion in terms
of a large conserved charge with unknown coe�cients. For
the Wilson–Fisher point in the three-dimensional O(N)
vector model [11], except for two low-energy couplings,
all terms are suppressed by inverse powers of the large
charge [6]. The approximate physics of the cft becomes
accessible as a function of these two couplings which we
label as c3/2 and c1/2. This suggests a double-pronged
approach to cfts, which involves using the large-charge
expansion to determine the e↵ective action, paired with
mc calculations to determine the low-energy couplings.
For the case of the O(2) Wilson–Fisher cft, this approach
has been successfully implemented recently [12]. In partic-
ular, it was shown that the predictions obtained with the
two couplings remain very accurate even for low charges.

In this letter, we explore the viability of this approach
for the O(4) Wilson–Fisher cft, which has qualitatively
distinct features from the O(2) model studied earlier.
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FIG. 1. Plot ofD(j, j) as a function of j. The squares represent
the data obtained using mc calculations with the lattice model
in Eq. (11). The solid line is the large-charge prediction Eq. (5)
with c3/2 = 1.068(4) and c1/2 = 0.083(3).

The fact that O(4) symmetry is non-Abelian and that it
leads to two conserved global charges jl and jr, creates
novel challenges. The ground state can become spatially
inhomogeneous requiring a di↵erent analysis in the eft,
and the construction of a worldline-based lattice model
becomes necessary to access easily the large-charge sectors.
The cft with O(4) symmetry is also interesting in many
subfields of physics. For example, it arises naturally in
the study of finite-temperature chiral phase transitions in
two-flavor quantum chromodynamics (qcd) with massless
quarks [13, 14]. It is also of interest in studies of strongly
correlated electronic systems at half filling built out of
models of interacting electrons with spin [15].

Traditional O(4) lattice models are constructed using
classical vectors. Unfortunately, in the study of large
charge sectors, using traditional mc methods based on
sampling classical vectors leads to severe signal-to-noise
ratio problems. While worldline representations can in
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as a function of the scaling variable (U � Uc)L
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lines show the goodness of the combined fit of all the data
shown to polynomials to fourth order.

small values. Using well-established mc methods [18,
19] we first demonstrate that at the critical point we
obtain the O(4) Wilson–Fisher cft by computing the
critical exponents ⌫ and ⌘. For this purpose we compute
the current susceptibility ⇢s and the order parameter
susceptibility �, details of which can be found in the
Supplementary Material. Finite-size scaling theory near
a second-order phase transition predicts that ⇢sL and
�L

2�⌘ must be simple polynomials of (U � Uc)L1/⌫ . A
combined fit of our data gives Uc = 1.655394(3), ⌫ =
0.746(3) and ⌘ = 0.0353(10). In Fig. 3 we plot our data
and the fit. These exponents are in excellent agreement
with earlier results, ⌫ = 0.749(2) and ⌘ = 0.0365(10),
obtained from the traditional lattice model [25].

Having established that our lattice model indeed re-
produces the O(4) cft when U = Uc, we can use the
method we developed in Ref. [12] to accurately compute
the conformal dimensions D(j, j) at the O(4) cft. We
can create configurations in a specific (jl, jr) sector by
placing appropriately charged sources and sinks at t = 0
and t = L/2 respectively. More concretely, sources that
create a red loop are assigned the charge (1/2, 1/2) and
the sinks that annihilate them are assigned the charge
(�1/2,�1/2). Similarly, those that create and annihi-
late the green loops are assigned charges (1/2,�1/2) and
(�1/2, 1/2). Using these fundamental sources we can con-
struct sources and sinks with any charge (ql, qr). However,
since each site can only have one red or one green source,
to create a source with a large charge we distribute the
fundamental sources in a local region near the origin (see
Supplementary Material for more details). Since the cou-
plings c3/2 and c1/2 can be computed by fitting the data

j D(j, j) j D(j, j)
(this work) (from [26]) (this work) (from [26])

1/2 0.515(3) 0.5180(3) 1 1.185(4) 1.1855(5)
3/2 1.989(5) 1.9768(10) 2 2.915(6) 2.875(5)
5/2 3.945(6) - 3 5.069(7) -
7/2 6.284(8) - 4 7.575(9) -
9/2 8.949(10) - 5 10.386(11) -

TABLE I. Results for the conformal dimensions D(j, j) up
to j = 5 computed using worldline mc methods in this work
(second and fifth column). We also compare our results with
earlier calculations up to j = 2 found in [26].
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these di↵erences we can also estimate D(j, j), since con-
formal invariance fixes D(0, 0) = 0. Our final results are
tabulated in Table I up to j = 5. As the table shows,
our results are also in good agreement with earlier calcu-
lations up to j = 2 [26]. Fitting the data in Table I to
the large j form in Eq. (5) we obtain c3/2 = 1.068(4) and
c1/2 = 0.083(3) (see Fig. 1).

CONCLUSIONS

In this letter we provide a new prediction for the anoma-
lous dimensions D(jl, jr) (see (10)) at the O(4) Wilson–
Fisher fixed point in terms of the two couplings that
appear in the fixed large-charge e↵ective action (1). Our
prediction is valid in the limit of large (jl, jr) and small
|jl � jr|/max(jl, jr). We then use a discrete lattice O(4)
model to compute the two couplings by fitting the data
for D(j, j) to the prediction in Eq. (5) obtained from an
earlier work. We also demonstrate that this prediction
provides an excellent approximation even at small val-
ues of j (see Fig. 1). Our estimate c3/2 = 1.068(4) and
c1/2 = 0.083(3) can be used in (10) to predict D(jl, jr)
even for jl 6= jr. While our lattice model can in principle
be used to check the validity of these predictions, our
method is likely to su↵er from signal to noise ratio prob-
lems when jl and jr are su�ciently large and di↵erent.
Discrete lattice models like ours can in principle also be
designed for other non-Abelian symmetry groups, thus
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Conclusions

It is possible to construct qubit Hamiltonians to study our favorite 
QFTs, but the analysis requires non-perturbative methods.

The recent proposal of Q-expansion for CFTs seems like a promising 
approach. It would be interesting to explore fermionic theories with it.

Construction of Qubit models for quantum computers, must occur 
in two steps: 

A. First perform Monte Carlo calculations to identify the 
quantum critical point where the correct QFT emerges.

B. Then study the theory close to the quantum critical point 
on the quantum computer.


