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are usually not easy to compute except in a few cases.

Traditional methods:
Exact results, e-expansion, Monte Carlo, bootstrap, ...

New proposal: “Q-expansion” (large charge expansion)
Hellerman, Orlando, Reffert, Watanabe JHEP 12(2015) 71.

Alvarez-Gaume, Loukas, Orlando, Reffert, JHEP 4 (2017) 59.

Use a large conserved charge “Q” sectors to identify a small parameter.

Then, use Effective Field Theory ideas and “radial” quantization
to solve for the conformal dimensions as a perturbative expansion.
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C3/2, C1/2 are low energy constants that are unknown.

Q: How well does this approach work?
A: Compute Dg using a Monte Carlo method and check!

Challenge: Computing Dg using Monte Carlo methods
suffers from severe signal to noise ratio problems with
conventional methods for large Q.
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1\ 7°
0iQ0x o—iQ0, \
X — y]

For large Q, we have to average quantities of unit magnitude to
obtain small numbers!

Things can be even more complicated with other models!

Non-trivial Example: O(4) model at the 3d Wilson-Fisher fixed point.
50(4) ~ SU(2) x SU(2) » Representations: (9L, 9r)

Hence we now need to compute

Dg, .ag
1
<O)‘<7L1C7R (OT))‘zL,QR> N <‘X _y’>
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The O(2) Model

Banerjee, SC, Orlando PRL 120, (2016) 061603

Traditional Worldline

S / 1] & & S o0 01) Z =3 1 faaB2)] [ TIT8( Y (0xe = Ga))]

l[a] X« a

¥ dx, o
X+«

The worldline approach allows us to efticiently create and annihilate
charges at various space-time separations using worm algorithms.
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Partition function with sources and sinks

Zg = > |11 teaB/2)] | TT 0( (e = Ga))]

[q] X, 0 XFEXj Xf o

5( D (G = Goaa = Q) (D (. — Gyan + Q)

Scaling:

[ Zo ~ 1/LPe

L/2 L
l Worm algorithms can compute
Zo/Zg_1~ 1/L”¢

Ao = Do — Do_1

L x L box
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A(Q) D) Q0  A(Q) D(Q)
0.516(3)  0.516(3) 7 1.332(5) 6.841(8)
0.722(4)  1.238(5) 8  1.437(4) 8.278(9)
Our results: 0.878(4)  2.116(6) 9  1.518(2) 9.796(9)

1.012(2)  3.1286) 10  1.603(2)  11.399(10)
1.137(2)  426506) 11  1.678(5)  13.077(11)
1.243(3)  5.509(7) 12 1.748(5)  14.825(12)

NN B W=

Previous work only up to Q=4 Hasenbusch, Vicari, PRB 84 (2011) 125136
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Fit Data: Do = 1.195(10) @*2 + 0.075(10) Q2 — 0.094

T

analytic calculation
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construct a simpler formulation of the theory?

v

Qubit formulation of the O(4) Wilson-Fisher fixed point!
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Canonical commutation relation of QFTs requires an infinite dimensional
Hilbert space per lattice site.

[0(x), 7(y)] = idxy

Traditional formulations of scalar and gauge field theories begin with
this commutation relation and hence require an infinite dimensional
Hiloert space per spatial site.

Definition: Qubit formulations of a QFT reproduces the QFT of interest
with a finite dimensional Hilbert space per lattice site.

Fermions are already qubits, but with anti-commutation relations.
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Insight from non-perturbative Wilson's RG
|dentifying QCPs

usually requires tools
Quantum Critical Point :
beyond perturbation

/ theory!
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It iIs important to identify the Quantum Critical Points
that lead to the QFT of interest.
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Today they can be explored using new algorithms developed in the
past two decades!

Due to these algorithms, they are often simpler than traditional QFT

but still reproduce the physics of interest.
D-theory approach, Wiese (2006)

Perhaps some day we can also design a guantum computer and

develop algorithms to study them!
Jordan, Lee, Preskill (2012) + many more in the past two years!

This talk: They helped us to explore the large Q-expansion in the O(4) model!
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Qubit Formulation of O(3) scalar QFT

T. Bhattacharya, SC, R. Gupta, H.Singh and R. Somma

Euclidean action of the 1 y S 5
S = d°x dt 0,,¢ - O
traditional theory g X dT O - 0u¢

Features of the QFT fixed point
d=1, asymptotically free fixed point
d=2, Wilson-Fisher fixed point

d=3, Gaussian free fixed point

Q: Can we reproduce these features using a Qubit Hamiltonian®
A: Yes! Here we focus on d=2 Wilson-Fisher point!
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Use two qubits per site:

b

S, r) m,r),

singlet triplet

m=20,+1, —1

Thus, a qubit formulation of the O(3) model has four states per site!

. + ..... |

Fock

Vacuum Spin-1 particle

O(3) invariant H — JtS‘ y: m, r)(m, v
Hamiltonian —
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Fuclidean Qubit O(3) Model

Z = Z/[dtk...dtl]Tr(e_(ﬁ_tk)Hl(—HQ) e~ (te—tu—1)H1 ...(_H2)6—(t1)H1)

Z = Z 1T W

] (i3)

Relativistic Limit

Hamiltonian limit € — 0

Can study using classical QMC
(directed loop/worm algorithms)
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3 1
Y = ZlLd;/o dt Tr(e_(ﬁ_t)Har,me_tHaj/,m> Ps — Ld_25< (QW)2>







v =0.7113(11), n = 0.0378(6)

Wilson-Fisher fixed point Pelisetto and Vicari Phys. Repts. (2002)



Wilson-Fisher fixed point

pslL

2.00 -

1.75 -

1.50 A

1.25 A

1.00 1

0.75 -

0.50 1

0.25 -

0.00 -

ol |of (@] [®]

L=64
L=72
L=96
L=112

v =0.7113(11), n = 0.0378(6)
Pelisetto and Vicari Phys. Repts. (2002)



v =0.7113(11), n = 0.0378(6)

Wilson-Fisher fixed point Pelisetto and Vicari Phys. Repts. (2002)

pslL

| & L=72 ® L=72
L7531 & L-ge 301 § L=96
1501 @ L=112 g ® L=112 g
2.5 -
1.25- O |? Y
J 2,07
1.00 - -
~—
1.5
0.75 - <
0.50 - 1.0
0.25 - 0.5 -
00010 © © o o ©
| | | 0.0 - |
-5 0 5 -5 5



Wilson-Fisher fixed point

pslL

2.00 -

1.75 -

1.50 1

1.25 -

1.00 1

0.75 -

0.50 1

0.25 -

0.00 -

v =0.7113(11), n = 0.0378(6)

Pelisetto and Vicari Phys. Repts. (2002)

ol @] |®] |®f

O

L=64
L=72
L=96
L=112

o ©

_5(J i

I L=64 g 3.5 1
: T g
2.5 1
E@: <
CL 2.0-
~J
§ 1.5+
1.0 A
0.5 A
© © | © , 0.0 -
-5 5
(J — Jo) LYY
x> =0.53,/.=0.244329(11)
v=0.7113(0), n=0.038(0)

0

JC)Ll/I/

5




Wilson-Fisher fixed point

pslL

2.00 -

1.75 1

1.50 1

1.25 -

1.00 1

0.75 -

0.50 1

0.25 -

0.00 -

@ @ |

L=64
L=72
L=96
L=112

e

«

«©

v =0.7113(11),
Pelisetto and Vicari Phys. Repts. (2002)

3.5

3.0 -

2.5 1

X/L2"

n = 0.0378(6)

2.0

1.5 -

1.0 -

0.5 1

0.0 A

g L=64 O
& L=72 &
® L=112 e
@
3
o © ©
5

s ;
(J— J )L

=0.244329(11)
0), n=0.038(0)

We see the Gaussian fixed point in d=3+1. We also see asymptotic
freedom in d=1+1 but with caveats!
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Banerjee,SC,Orlando,Reffert, 1902.09542

Needs five states per lattice site. 1] —

® pSL
= ></L(2'T])

0.6

48 <L <128 -
04+

(U_UC)L1/V
U. = 1.655394(3)

Every monomer has weight U v = 0.746(3), n = 0.0353(10)

Pelisetto, Vicari Phys. Repts. (2002)
v =0.749(2),n = 0.0365(10)






Large charge results at the O(4) Wilson-Fisher fixed point

Q D(Q.Q) Q D(Q.Q)

(this work) | (from [26])|| |(this work)|(from [26])
1/2] 0.515(3) | 0.5180(3) ||1| 1.185(4) | 1.1855(5)
3/2| 1.989(5) |1.9768(10)|[2| 2.915(6) | 2.875(5)
5/2| 3.945(6) - 3| 5.069(7) -
7/2| 6.284(8) - 4| 7.575(9) -
9/2| 8.949(10) - 5(10.386(11) _
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Conclusions

The recent proposal of Q-expansion for CFTs seems like a promising
approach. It would be interesting to explore fermionic theories with it.

It Is possible to construct qubit Hamiltonians to study our favorite
QFTs, but the analysis requires non-perturbative methods.

Construction of Qubit models for guantum computers, must occur
INn two steps:

B. Then study the theory close to the quantum critical point
on the quantum computer.



