New Lattice Approach for β-function in the Chirally Broken Phase

Chik Him (Ricky) Wong

Lattice Higgs Collaboration (LatHC):
Julius Kuti (UC, San Diego), Zoltan Fodor (Wuppertal U.), Kieran Holland (U. Pacific, Stockton), Daniel Nogradi (Eotvos U.)

2018
β-function at strong coupling is crucial in the studies of nearly conformal theories, but simulation becomes hard as we approach the conformal window.

Here we present an alternate way of obtaining the β-function making use of knowledge in the p-regime for theories outside the conformal window.
Outline

- Review: Lattice Studies of β-function of nearly conformal gauge theories
- An alternative Lattice approach for β-function in the χSB phase
- Application example: β-function of the Sextet model
- Conclusion
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Lattice study of β-function
 - Gradient Flow [Lüscher JHEP 1008:071,2010]
 \[
 \frac{dA_\mu(t)}{dt} = D_\nu F_{\nu\mu}, \ D_\mu = \partial_\mu + [A_\mu, \cdot]
 \]
 - Perturbation Theory \overline{MS}, RG scale: $\mu = 1/\sqrt{8t}$
 \[
 E = \frac{3(N_c^2 - 1)g^2}{128\pi^2t^2}(1 + c_1g^2 + O(g^4)), \ E = \frac{1}{4}(F_{\mu\nu}^a)^2
 \]
 - Non-perturbative definition, (overall normalization depends on boundary conditions etc)
 \[
 g^2(t) \propto \left(\frac{128\pi^2}{3(N_c^2 - 1)} \right) t^2 \langle E \rangle_{\text{latt}}
 \]
- β-function $\propto -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2}{dt}$
- Defined in continuum and infinite volume
Review: Lattice Studies of β-function of nearly conformal gauge theories

- **Lattice study of β-function**
 - **Gradient Flow** [Lüscher JHEP 1008:071,2010]

$$\frac{dA_\mu(t)}{dt} = D_v F_{v\mu}, \quad D_\mu = \partial_\mu + [A_\mu, \cdot]$$

- **Perturbation Theory** \overline{MS}, RG scale: $\mu = 1/\sqrt{8t}$

$$E = \frac{3(N_c^2 - 1)g^2}{128\pi^2 t^2} (1 + \bar{c} g^2 + O(g^4)), \quad E = \frac{1}{4} (F_{\mu \nu}^a)^2$$

- **Non-perturbative definition**, (overall normalization depends on boundary conditions etc)

$$g^2(t) \propto \left(\frac{128\pi^2}{3(N_c^2 - 1)} \right) t^2 \langle E \rangle_{\text{latt}}$$

- β-function $\propto -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2}{dt}$
- **Defined in continuum and infinite volume**
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Lattice study of β-function
 - Gradient Flow \([\text{Lüscher JHEP 1008:071,2010}]\)
 \[
 \frac{dA_\mu(t)}{dt} = D_v F_{v\mu}, \ D_\mu = \partial_\mu + [A_\mu, \cdot]
 \]
 - Perturbation Theory $\overline{\text{MS}}$, RG scale: $\mu = 1/\sqrt{8t}$
 \[
 E = \frac{3(N_c^2 - 1)g^2}{128\pi^2 t^2} (1 + c_1 g^2 + O(g^4)), \ E = \frac{1}{4} (F_{\mu\nu}^a)^2
 \]
- Non-perturbative definition, (overall normalization depends on boundary conditions etc)
 \[
 g^2(t) \propto \left(\frac{128\pi^2}{3(N_c^2 - 1)} \right) t^2 \langle E \rangle_{\text{latt}}
 \]
- β-function $\propto -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2}{dt}$
- Defined in continuum and infinite volume
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Lattice study of β-function
 - Gradient Flow [Lüscher JHEP 1008:071, 2010]
 \[
 \frac{dA_\mu(t)}{dt} = D_\nu F_{\nu\mu}, \quad D_\mu = \partial_\mu + [A_\mu, \cdot]
 \]
 - Perturbation Theory \(MS\), RG scale: \(\mu = 1/\sqrt{8t}\)
 \[
 E = \frac{3(N_c^2 - 1)g^2}{128\pi^2 t^2} (1 + c_1 g^2 + O(g^4)), \quad E = \frac{1}{4} (F^a_{\mu\nu})^2
 \]
 - Non-perturbative definition, (overall normalization depends on boundary conditions etc)
 \[
 g^2(t) \propto \left(\frac{128\pi^2}{3(N_c^2 - 1)} \right) t^2 \langle E \rangle_{\text{latt}}
 \]

- β-function \(\propto -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2}{dt}\)
- Defined in continuum and infinite volume
Review: Lattice Studies of β-function of nearly conformal gauge theories

- **Lattice study of β-function**
 - **Gradient Flow** [Lüscher JHEP 1008:071,2010]
 \[
 \frac{dA_\mu(t)}{dt} = D_v F_{v\mu}, \quad D_\mu = \partial_\mu + [A_\mu, \cdot]
 \]
 - **Perturbation Theory** \overline{MS}, RG scale: $\mu = 1/\sqrt{8t}$
 \[
 E = \frac{3(N_c^2 - 1)g^2}{128\pi^2 t^2} (1 + c_1 g^2 + O(g^4)), \quad E = \frac{1}{4} (F^a_{\mu\nu})^2
 \]
 - **Non-perturbative definition, (overall normalization depends on boundary conditions etc)**
 \[
 g^2(t) \propto \left(\frac{128\pi^2}{3(N_c^2 - 1)} \right) t^2 \langle E \rangle_{\text{latt}}
 \]
 - **β-function**
 \[
 \beta \propto -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2}{dt}
 \]
 - Defined in continuum and infinite volume
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Lattice study of β-function
 - Gradient Flow [Lüscher JHEP 1008:071,2010]
 \[
 \frac{dA_\mu(t)}{dt} = D_v F_{v\mu},\ D_\mu = \partial_\mu + [A_\mu, \cdot]
 \]
 - Perturbation Theory \overline{MS}, RG scale: $\mu = 1/\sqrt{8t}$
 \[
 E = \frac{3(N_c^2 - 1)g^2}{128\pi^2 t^2} (1 + c_1 g^2 + O(g^4)),\ E = \frac{1}{4} (F_{\mu\nu}^a)^2
 \]
 - Non-perturbative definition, (overall normalization depends on boundary conditions etc)
 \[
 g^2(t) \propto \left(\frac{128\pi^2}{3(N_c^2 - 1)} \right) t^2 \langle E \rangle_{\text{latt}}
 \]
 - β-function $\propto -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2}{dt}$
 - Defined in continuum and infinite volume
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Finite step scaling
 - β function can be studied by step scaling [Fodor et al, JHEP 1211 007 (2012)]
 - Physical volume: L^4; Lattice volume: $(L/a)^4$
 - Fix $c = \sqrt{8t}/L \Rightarrow \mu = 1/(cL)$
 - Compare g_c^2 at L/a with g_c^2 at sL/a for some finite ratio s

$$\beta(g_c^2, a/L) = \frac{g_c^2(sL/a) - g_c^2(L/a)}{\ln(s^2)}$$

g_c^2 is obtained by either tuning $6/g_0^2$ or interpolating $g_c^2(6/g_0^2)$

- Continuum limit $a/L \to 0$ at each value of g_c^2
 (odd powers are absent for staggered fermions)

$$\beta(g_c^2, a/L) = \beta(g_c^2) + k_1 a^2/L^2 (+k_2 a^4/L^4)$$

- In our previous studies, massless staggered fermions anti-periodic in all directions is used
- More recent examples:
 $N_f = 10, 12$ in Fundamental representation [Fodor et al, Phys. Lett. B779 (2018)]
Review: Lattice Studies of β-function of nearly conformal gauge theories

- **Finite step scaling**
 - β function can be studied by step scaling \cite{Fodor et al, JHEP 1211 007 (2012)}
 - Physical volume: L^4; Lattice volume: $(L/a)^4$
 - Fix $c = \sqrt{8t/L} \Rightarrow \mu = 1/(cL)$
 - Compare g_c^2 at L/a with g_c^2 at sL/a for some finite ratio s

 $$\beta(g_c^2, a/L) = \frac{g_c^2(sL/a) - g_c^2(L/a)}{\ln(s^2)}$$

 g_c^2 is obtained by either tuning $6/g_0^2$ or interpolating $g_c^2(6/g_0^2)$
 - Continuum limit $a/L \to 0$ at each value of g_c^2
 (odd powers are absent for staggered fermions)

 $$\beta(g_c^2, a/L) = \beta(g_c^2) + k_1 \frac{a^2}{L^2} (+k_2 \frac{a^4}{L^4})$$

- In our previous studies, massless staggered fermions anti-periodic in all directions is used
- More recent examples:
 $N_f = 10, 12$ in Fundamental representation \cite{Fodor et al, Phys.Lett. B779 (2018)}
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Finite step scaling
 - β function can be studied by step scaling [Fodor et al, JHEP 1211 007 (2012)]
 - Physical volume: L^4; Lattice volume: $(L/a)^4$
 - Fix $c = \sqrt{8 t}/L \Rightarrow \mu = 1/(c L)$
 - Compare g_c^2 at L/a with g_c^2 at sL/a for some finite ratio s

\[
\beta(g_c^2, a/L) = \frac{g_c^2(sL/a) - g_c^2(L/a)}{\ln(s^2)}
\]

g_c^2 is obtained by either tuning $6/g_0^2$ or interpolating $g_c^2(6/g_0^2)$

- Continuum limit $a/L \rightarrow 0$ at each value of g_c^2
 (odd powers are absent for staggered fermions)

\[
\beta(g_c^2, a/L) = \beta(g_c^2) + k_1 \frac{a^2}{L^2} (+k_2 \frac{a^4}{L^4})
\]

- In our previous studies, massless staggered fermions anti-periodic in all directions is used
- More recent examples:
 $N_f = 10, 12$ in Fundamental representation [Fodor et al, Phys.Lett. B779 (2018)]
Review: Lattice Studies of β-function of nearly conformal gauge theories

- **Finite step scaling**
 - β function can be studied by step scaling [Fodor et al, JHEP 1211 007 (2012)]
 - Physical volume: L^4; Lattice volume: $(L/a)^4$
 - Fix $c = \sqrt{8t}/L \Rightarrow \mu = 1/(cL)$
 - Compare g_c^2 at L/a with g_c^2 at sL/a for some finite ratio s
 \[
 \beta(g_c^2, a/L) = \frac{g_c^2(sL/a) - g_c^2(L/a)}{\ln(s^2)}
 \]
 g_c^2 is obtained by either tuning $6/g_0^2$ or interpolating $g_c^2(6/g_0^2)$
 - Continuum limit $a/L \to 0$ at each value of g_c^2
 (odd powers are absent for staggered fermions)
 \[
 \beta(g_c^2, a/L) = \beta(g_c^2) + k_1 a^2/L^2 (+k_2 a^4/L^4)
 \]

- In our previous studies, massless staggered fermions anti-periodic in all directions is used
- More recent examples:
 $N_f = 10, 12$ in Fundamental representation [Fodor et al, Phys.Lett. B779 (2018)]
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Finite step scaling
 - β function can be studied by step scaling [Fodor et al, JHEP 1211 007 (2012)]
 - Physical volume: L^4; Lattice volume: $(L/a)^4$
 - Fix $c = \sqrt{8t/L} \Rightarrow \mu = 1/(cL)$
 - Compare g_c^2 at L/a with g_c^2 at sL/a for some finite ratio s

$$
\beta(g_c^2, a/L) = \frac{g_c^2(sL/a) - g_c^2(L/a)}{\ln(s^2)}
$$

g_c^2 is obtained by either tuning $6/g_0^2$ or interpolating $g_c^2(6/g_0^2)$
- Continuum limit $a/L \to 0$ at each value of g_c^2
 (odd powers are absent for staggered fermions)

$$
\beta(g_c^2, a/L) = \beta(g_c^2) + k_1 \frac{a^2}{L^2} (+k_2 \frac{a^4}{L^4})
$$

- In our previous studies, massless staggered fermions anti-periodic in all directions is used
- More recent examples:
 $N_f = 10, 12$ in Fundamental representation [Fodor et al, Phys.Lett. B779 (2018)]
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Finite step scaling
 - β function can be studied by step scaling [Fodor et al, JHEP 1211 007 (2012)]
 - Physical volume: L^4 ; Lattice volume: $(L/a)^4$
 - Fix $c = \sqrt{8t/L} \Rightarrow \mu = 1/(cL)$
 - Compare g_c^2 at L/a with g_c^2 at sL/a for some finite ratio s

$$\beta(g_c^2, a/L) = \frac{g_c^2(sL/a) - g_c^2(L/a)}{\ln(s^2)}$$

g_c^2 is obtained by either tuning $6/g_0^2$ or interpolating $g_c^2(6/g_0^2)$

- Continuum limit $a/L \rightarrow 0$ at each value of g_c^2
 (odd powers are absent for staggered fermions)

$$\beta(g_c^2, a/L) = \beta(g_c^2) + k_1 \frac{a^2}{L^2}(+k_2 \frac{a^4}{L^4})$$

- In our previous studies, massless staggered fermions anti-periodic in all directions is used
- More recent examples:
 $N_f = 10, 12$ in Fundamental representation [Fodor et al, Phys.Lett. B779 (2018)]
Review: Lattice Studies of β-function of nearly conformal gauge theories

- **Finite step scaling**
 - β function can be studied by step scaling [Fodor et al, JHEP 1211 007 (2012)]
 - Physical volume: L^4; Lattice volume: $(L/a)^4$
 - Fix $c = \sqrt{8t/L} \Rightarrow \mu = 1/(cL)$
 - Compare g_c^2 at L/a with g_c^2 at sL/a for some finite ratio s

$$\beta(g_c^2, a/L) = \frac{g_c^2(sL/a) - g_c^2(L/a)}{\ln(s^2)}$$

g_c^2 is obtained by either tuning $6/g_0^2$ or interpolating $g_c^2(6/g_0^2)$

- Continuum limit $a/L \to 0$ at each value of g_c^2
 (odd powers are absent for staggered fermions)

$$\beta(g_c^2, a/L) = \beta(g_c^2) + k_1 a^2/L^2 (+k_2 a^4/L^4)$$

- In our previous studies, massless staggered fermions anti-periodic in all directions is used

- More recent examples:
 $N_f = 10, 12$ in Fundamental representation [Fodor et al, Phys.Lett. B779 (2018)]
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Finite step scaling
 - β function can be studied by step scaling \[\text{[Fodor et al, JHEP 1211 007 (2012)]} \]
 - Physical volume: L^4; Lattice volume: $(L/a)^4$
 - Fix $c = \sqrt{8t/L} \Rightarrow \mu = 1/(cL)$
 - Compare g_c^2 at L/a with g_c^2 at sL/a for some finite ratio s

\[\beta(g_c^2, a/L) = \frac{g_c^2(sL/a) - g_c^2(L/a)}{\ln(s^2)} \]

g_c^2 is obtained by either tuning $6/g_0^2$ or interpolating $g_c^2(6/g_0^2)$

- Continuum limit $a/L \to 0$ at each value of g_c^2
 (odd powers are absent for staggered fermions)

\[\beta(g_c^2, a/L) = \beta(g_c^2) + k_1 \frac{a^2}{L^2} (+k_2 \frac{a^4}{L^4}) \]

- In our previous studies, massless staggered fermions anti-periodic in all directions is used

- More recent examples:
 $N_f = 10, 12$ in Fundamental representation [Fodor et al, Phys.Lett. B779 (2018)]
Latest results: $N_f = 12 \ (\beta \equiv 6/g^2_0 \ \text{here})$

\[g^2 \text{ (tuned)} = 6.9842 \pm 0.0014 \]

$\chi^2/\text{dof} = 0.3 \quad Q = 0.91$

Added $L = 32 \rightarrow L = 64$
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Latest results: $N_f = 12$ ($\beta \equiv 6/g_0^2$ here)

- Added $L = 32 \rightarrow L = 64$
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Latest results: $N_f = 12$ ($\beta \equiv 6/g_0^2$ here)

![Graph showing lattice studies of beta function](image)

- More data points planned
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Latest results: $N_f = 12 \ (\beta \equiv 6/g_0^2$ here)

- More data points planned
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Latest results: $N_f = 12$

\[\frac{(g^2(sL) - g^2(L))}{\log(s^2)} = c_0 + c_1 \cdot \frac{a^2}{L^2} \]

\[c_0 = 0.117 \pm 0.011 \]
\[c_1 = -70.5 \pm 4.7 \]

χ^2/dof = 0.44
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Latest results: $N_f = 12$

- Strong disagreement with [Hasenfratz and Schaich, JHEP 1802 132 (2018)]
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Latest results: $N_f = 12$

- Strong disagreement with [Hasenfratz and Schaich, JHEP 1802 132 (2018)]
Latest results: $N_f = 10$ ($\beta \equiv 6/g_0^2$ here)
Latest results: $N_f = 10$

\[\frac{g^2(sL) - g^2(L)}{\log(s^2)} = c_0 + c_1 \cdot \frac{a^2}{L^2}\]

- $c_0 = 0.727 \pm 0.029$
- $c_1 = -30.1 \pm 9$
- $\chi^2/dof = 1.2$
- Targeted $g^2 = 7$
New Lattice Approach for β-function in the Chirally Broken Phase

Chik Him (Ricky) Wong

Outline
Review
Alternative approach
Application example
Conclusion

- **Latest results**: $N_f = 10$

![Graph showing the β-function with $N_f = 10$](image)

- **Strong disagreement with** [Chiu, PoS LATTICE2016 228 (2017)]
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Latest results: $N_f = 10$

- Strong disagreement with [Chiu, PoS LATTICE2016 228 (2017)]
Two ways to determine boundary of conformal window

1. Rejecting χ_{SB}: Look for IRFP
 - β-function diminishes as we approach near conformal window
 \Rightarrow higher accuracy and better systematic controls are needed
 \Rightarrow Costly simulations are needed to hopefully resolve controversies
 - Absence of IRFP in limited search range of g^2 is not decisive
 \Rightarrow An IRFP is always possible at stronger g^2 out of reach

2. Rejecting IR conformality: Look for signals of χ_{SB}
 - If the theory is χ_{SB}, chiral symmetry is spontaneously broken beyond certain $g_{critical}^2$
 - The value of $g_{critical}^2$ has to be consistent with results from the p-regime simulations
 \Rightarrow p-regime simulations predict how the model should behave beyond $g_{critical}^2$
 - If we can compute β-function from p-regime calculation and covers the range of g^2 values achievable by step scaling (hopefully includes $g_{critical}^2$), it is a consistency test for χ_{SB} behavior
Review: Lattice Studies of β-function of nearly conformal gauge theories

Two ways to determine boundary of conformal window

1. Rejecting χSB: Look for IRFP
 - β-function diminishes as we approach near conformal window
 ⇒ higher accuracy and better systematic controls are needed
 ⇒ Costly simulations are needed to hopefully resolve controversies
 - Absence of IRFP in limited search range of g^2 is not decisive
 ⇒ An IRFP is always possible at stronger g^2 out of reach

2. Rejecting IR conformality: Look for signals of χSB
 - If the theory is χSB, chiral symmetry is spontaneously broken beyond certain g^2_{critical}
 - The value of g^2_{critical} has to be consistent with results from the p-regime simulations
 ⇒ p-regime simulations predict how the model should behave beyond g^2_{critical}
 - If we can compute β-function from p-regime calculation and covers the range of g^2 values achievable by step scaling (hopefully includes g^2_{critical}), it is a consistency test for χSB behavior
Review: Lattice Studies of β-function of nearly conformal gauge theories

Two ways to determine boundary of conformal window

1. Rejecting χSB: Look for IRFP
 - β-function diminishes as we approach near conformal window
 ⇒ higher accuracy and better systematic controls are needed
 ⇒ Costly simulations are needed to hopefully resolve controversies
 - Absence of IRFP in limited search range of g^2 is not decisive
 ⇒ An IRFP is always possible at stronger g^2 out of reach

2. Rejecting IR conformality: Look for signals of χSB
 - If the theory is χSB, chiral symmetry is spontaneously broken beyond certain g^2_{critical}
 - The value of g^2_{critical} has to be consistent with results from the p-regime simulations
 ⇒ p-regime simulations predict how the model should behave beyond g^2_{critical}
 - If we can compute β-function from p-regime calculation and covers the range of g^2 values achievable by step scaling (hopefully includes g^2_{critical}), it is a consistency test for χSB behavior
Review: Lattice Studies of β-function of nearly conformal gauge theories

- Two ways to determine boundary of conformal window
 1. Rejecting χSB: Look for IRFP
 - β-function diminishes as we approach near conformal window
 \Rightarrow higher accuracy and better systematic controls are needed
 \Rightarrow Costly simulations are needed to hopefully resolve controversies
 - Absence of IRFP in limited search range of g^2 is not decisive
 \Rightarrow An IRFP is always possible at stronger g^2 out of reach
 2. Rejecting IR conformality: Look for signals of χSB
 - If the theory is χSB, chiral symmetry is spontaneously broken beyond certain g^2_{critical}
 - The value of g^2_{critical} has to be consistent with results from the p-regime simulations
 \Rightarrow p-regime simulations predict how the model should behave beyond g^2_{critical}
 - If we can compute β-function from p-regime calculation and covers the range of g^2 values achievable by step scaling (hopefully includes g^2_{critical}), it is a consistency test for χSB behavior
Review: Lattice Studies of β-function of nearly conformal gauge theories

Two ways to determine boundary of conformal window

1. Rejecting χSB: Look for IRFP
 - β-function diminishes as we approach near conformal window
 \Rightarrow higher accuracy and better systematic controls are needed
 \Rightarrow Costly simulations are needed to hopefully resolve controversies
 - Absence of IRFP in limited search range of g^2 is not decisive
 \Rightarrow An IRFP is always possible at stronger g^2 out of reach

2.Rejecting IR conformality: Look for signals of χSB
 - If the theory is χSB, chiral symmetry is spontaneously broken beyond certain g^2_{critical}
 - The value of g^2_{critical} has to be consistent with results from the p-regime simulations
 \Rightarrow p-regime simulations predict how the model should behave beyond g^2_{critical}
 - If we can compute β-function from p-regime calculation and covers the range of g^2 values achievable by step scaling (hopefully includes g^2_{critical}), it is a consistency test for χSB behavior
Two ways to determine boundary of conformal window

1. Rejecting χ_{SB}: Look for IRFP
 - β-function diminishes as we approach near conformal window
 \Rightarrow higher accuracy and better systematic controls are needed
 \Rightarrow Costly simulations are needed to hopefully resolve controversies
 - Absence of IRFP in limited search range of g^2 is not decisive
 \Rightarrow An IRFP is always possible at stronger g^2 out of reach

2. Rejecting IR conformality: Look for signals of χ_{SB}
 - If the theory is χ_{SB}, chiral symmetry is spontaneously broken beyond certain $g^2_{critical}$
 - The value of $g^2_{critical}$ has to be consistent with results from the p-regime simulations
 \Rightarrow p-regime simulations predict how the model should behave beyond $g^2_{critical}$
 - If we can compute β-function from p-regime calculation and covers the range of g^2 values achievable by step scaling (hopefully includes $g^2_{critical}$), it is a consistency test for χ_{SB} behavior
Two ways to determine boundary of conformal window

1. Rejecting χ_{SB}: Look for IRFP
 - β-function diminishes as we approach near conformal window
 \Rightarrow higher accuracy and better systematic controls are needed
 \Rightarrow Costly simulations are needed to hopefully resolve controversies
 - Absence of IRFP in limited search range of g^2 is not decisive
 \Rightarrow An IRFP is always possible at stronger g^2 out of reach

2. Rejecting IR conformality: Look for signals of χ_{SB}
 - If the theory is χ_{SB}, chiral symmetry is spontaneously broken beyond certain $g^2_{critical}$
 - The value of $g^2_{critical}$ has to be consistent with results from the p-regime simulations
 \Rightarrow p-regime simulations predict how the model should behave beyond $g^2_{critical}$
 - If we can compute β-function from p-regime calculation and covers the range of g^2 values achievable by step scaling (hopefully includes $g^2_{critical}$), it is a consistency test for χ_{SB} behavior
Review: Lattice Studies of β-function of nearly conformal gauge theories

Two ways to determine boundary of conformal window

1. Rejecting χSB: Look for IRFP
 - β-function diminishes as we approach near conformal window
 ⇒ higher accuracy and better systematic controls are needed
 ⇒ Costly simulations are needed to hopefully resolve controversies
 - Absence of IRFP in limited search range of g^2 is not decisive
 ⇒ An IRFP is always possible at stronger g^2 out of reach

2. Rejecting IR conformality: Look for signals of χSB
 - If the theory is χSB, chiral symmetry is spontaneously broken beyond certain g^2_{critical}
 - The value of g^2_{critical} has to be consistent with results from the p-regime simulations
 ⇒ p-regime simulations predict how the model should behave beyond g^2_{critical}
 - If we can compute β-function from p-regime calculation and covers the range of g^2 values achievable by step scaling (hopefully includes g^2_{critical}), it is a consistency test for χSB behavior
Step scaling is a costly approach:

- Massless fermions with specific boundary conditions
- Lattice ensembles are different from p-regime simulations
- Cost comparable with p-regime simulations, but not as useful
- If β-function can be studied in p-regime for theories outside the conformal window, we can reuse ensembles from p-regime simulations
Review: Lattice Studies of β-function of nearly conformal gauge theories

Outline
Review
Alternative approach
Application example
Conclusion

Step scaling is a costly approach:
- Massless fermions with specific boundary conditions
- Lattice ensembles are different from p-regime simulations
- Cost comparable with p-regime simulations, but not as useful
- If β-function can be studied in p-regime for theories outside the conformal window, we can reuse ensembles from p-regime simulations
Step scaling is a costly approach:

- Massless fermions with specific boundary conditions
- Lattice ensembles are different from p-regime simulations
- Cost comparable with p-regime simulations, but not as useful
- If β-function can be studied in p-regime for theories outside the conformal window, we can reuse ensembles from p-regime simulations
Step scaling is a costly approach:

- Massless fermions with specific boundary conditions
- Lattice ensembles are different from p-regime simulations
- Cost comparable with p-regime simulations, but not as useful
- If β-function can be studied in p-regime for theories outside the conformal window, we can reuse ensembles from p-regime simulations
Step scaling is a costly approach:
- Massless fermions with specific boundary conditions
- Lattice ensembles are different from p-regime simulations
- Cost comparable with p-regime simulations, but not as useful
- If β-function can be studied in p-regime for theories outside the conformal window, we can reuse ensembles from p-regime simulations
An alternative Lattice approach for β-function in the χSB phase

Chik Him (Ricky) Wong

Outline
Review
Alternative approach
Application example
Conclusion

[Fodor et al, LATTICE 2017(2017)]

- Along the flow: Obtain $\beta(g^2) = -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2(t)}{dt}$

Approximated by arbitrarily small $dt = \varepsilon$:

$$
\left. \frac{dg^2}{dt} \right|_t = \frac{1}{12\varepsilon} (-g^2(t + 2\varepsilon) + 8g^2(t + \varepsilon) - 8g^2(t - \varepsilon) + g^2(t - 2\varepsilon)) + O(\varepsilon^4)
$$

- Choose $g^2 = g_{\text{target}}^2$, determine t_0 such that

$g^2(t_0/a^2, L/a, am) = g_{\text{target}}^2$ at each L/a and am

- Obtain the corresponding $\beta(g^2(t_0/a^2, L/a, am))$

- Extrapolate t_0 and β at fixed value of g_{target}^2:
 - Infinite volume limit $L/a \to \infty$
 - Chiral limit $am \to 0$
 - Continuum limit $a^2/t_0 \to 0$

- Repeat at another g_{target}^2
An alternative Lattice approach for β-function in the χSB phase

[Fodor et al, LATTICE 2017(2017)]

- Along the flow: Obtain $\beta(g^2) = -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2(t)}{dt}$
 Approximated by arbitrarily small $dt = \varepsilon$:

 \[
 \left. \frac{dg^2}{dt} \right|_t = \frac{1}{12\varepsilon} (-g^2(t + 2\varepsilon) + 8g^2(t + \varepsilon) - 8g^2(t - \varepsilon) + g^2(t - 2\varepsilon)) + O(\varepsilon^4)
 \]

- Choose $g^2 = g_{\text{target}}^2$, determine t_0 such that
 $g^2(t_0/a^2, L/a, am) = g_{\text{target}}^2$ at each L/a and am

- Obtain the corresponding $\beta(g^2(t_0/a^2, L/a, am))$

- Extrapolate t_0 and β at fixed value of g_{target}^2:
 - Infinite volume limit $L/a \rightarrow \infty$
 - Chiral limit $am \rightarrow 0$
 - Continuum limit $a^2/t_0 \rightarrow 0$

- Repeat at another g_{target}^2
An alternative Lattice approach for β-function in the χ_{SB} phase

Chik Him (Ricky) Wong

Outline
Review
Alternative approach
Application example
Conclusion

[Modor et al, LATTICE 2017(2017)]

- Along the flow: Obtain $\beta(g^2) = -\mu^2 \, dg^2 / d\mu^2 = t \, dg^2(t) / dt$
 Approximated by arbitrarily small $dt = \varepsilon$:

$$\frac{dg^2}{dt} \bigg|_t = \frac{1}{12\varepsilon} \left(-g^2(t + 2\varepsilon) + 8g^2(t + \varepsilon) - 8g^2(t - \varepsilon) + g^2(t - 2\varepsilon) \right) + O(\varepsilon^4)$$

- Choose $g^2 = g^2_{\text{target}}$, determine t_0 such that
 $g^2(t_0/a^2, L/a, am) = g^2_{\text{target}}$ at each L/a and am

- Obtain the corresponding $\beta(g^2(t_0/a^2, L/a, am))$

- Extrapolate t_0 and β at fixed value of g^2_{target}:
 - Infinite volume limit $L/a \rightarrow \infty$
 - Chiral limit $am \rightarrow 0$
 - Continuum limit $a^2/t_0 \rightarrow 0$

- Repeat at another g^2_{target}
An alternative Lattice approach for \(\beta \)-function in the \(\chi_{SB} \) phase

Chik Him (Ricky) Wong

Outline
- Review
- Alternative approach
- Application example
- Conclusion

[Fodor et al, LATTICE 2017(2017)]

Along the flow: Obtain \(\beta (g^2) = -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2(t)}{dt} \)

Approximated by arbitrarily small \(dt = \epsilon \):

\[
\left. \frac{dg^2}{dt} \right|_t = \frac{1}{12\epsilon} \left(-g^2(t + 2\epsilon) + 8g^2(t + \epsilon) - 8g^2(t - \epsilon) + g^2(t - 2\epsilon) \right) + O(\epsilon^4)
\]

Choose \(g^2 = g_{\text{target}}^2 \), determine \(t_0 \) such that
\[g^2(t_0/a^2, L/a, am) = g_{\text{target}}^2 \text{ at each } L/a \text{ and } am \]

Obtain the corresponding \(\beta (g^2(t_0/a^2, L/a, am)) \)

Extrapolate \(t_0 \) and \(\beta \) at fixed value of \(g_{\text{target}}^2 \):
- Infinite volume limit \(L/a \to \infty \)
- Chiral limit \(am \to 0 \)
- Continuum limit \(a^2/t_0 \to 0 \)

Repeat at another \(g_{\text{target}}^2 \)
An alternative Lattice approach for \(\beta \)-function in the \(\chi \)SB phase

Outline
- Review
- Alternative approach
- Application example
- Conclusion

Chik Him (Ricky) Wong

[Refs: Fodor et al, LATTICE 2017(2017)]

- Along the flow: Obtain \(\beta(g^2) = -\mu^2 \, dg^2/d\mu^2 = t \, dg^2(t)/dt \)
 Approximated by arbitrarily small \(dt = \epsilon \):

\[
\left. \frac{dg^2}{dt} \right|_t = \frac{1}{12\epsilon} \left(-g^2(t+2\epsilon) + 8g^2(t+\epsilon) - 8g^2(t-\epsilon) + g^2(t-2\epsilon) \right) + O(\epsilon^4)
\]

- Choose \(g^2 = g_{\text{target}}^2 \), determine \(t_0 \) such that
 \(g^2(t_0/a^2, L/a, am) = g_{\text{target}}^2 \) at each \(L/a \) and \(am \)

- Obtain the corresponding \(\beta(g^2(t_0/a^2, L/a, am)) \)

- Extrapolate \(t_0 \) and \(\beta \) at fixed value of \(g_{\text{target}}^2 \):
 - Infinite volume limit \(L/a \rightarrow \infty \)
 - Chiral limit \(am \rightarrow 0 \)
 - Continuum limit \(a^2/t_0 \rightarrow 0 \)

- Repeat at another \(g_{\text{target}}^2 \)
An alternative Lattice approach for \(\beta \)-function in the \(\chi_{SB} \) phase

[Chik Him (Ricky) Wong]

Outline
Review
Alternative approach
Application example
Conclusion

Along the flow: Obtain
\[
\beta(g^2) = -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2(t)}{dt}
\]
Approximated by arbitrarily small \(dt = \varepsilon \):

\[
\left. \frac{dg^2}{dt} \right|_t = \frac{1}{12\varepsilon} \left(-g^2(t + 2\varepsilon) + 8g^2(t + \varepsilon) - 8g^2(t - \varepsilon) + g^2(t - 2\varepsilon) \right) + O(\varepsilon^4)
\]

Choose \(g^2 = g_{\text{target}}^2 \), determine \(t_0 \) such that
\[
g^2(t_0/a^2, L/a, am) = g_{\text{target}}^2 \text{ at each } L/a \text{ and } am
\]

Obtain the corresponding \(\beta(g^2(t_0/a^2, L/a, am)) \)

Extrapolate \(t_0 \) and \(\beta \) at fixed value of \(g_{\text{target}}^2 \):
- Infinite volume limit \(L/a \to \infty \)
- Chiral limit \(am \to 0 \)
- Continuum limit \(a^2/t_0 \to 0 \)

Repeat at another \(g_{\text{target}}^2 \)
An alternative Lattice approach for β-function in the χSB phase

Chik Him (Ricky) Wong

Outline
Review
Alternative approach
Application example
Conclusion

[Ador et al, LATTICE 2017(2017)]

- Along the flow: Obtain $\beta(g^2) = -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2(t)/dt}{dt}$
 Approximated by arbitrarily small $dt = \varepsilon$:

$$\frac{dg^2}{dt} \bigg|_t = \frac{1}{12\varepsilon} (-g^2(t + 2\varepsilon) + 8g^2(t + \varepsilon) - 8g^2(t - \varepsilon)$$

$$+ g^2(t - 2\varepsilon)) + O(\varepsilon^4)$$

- Choose $g^2 = g^2_{\text{target}}$, determine t_0 such that
 $g^2(t_0/a^2, L/a, am) = g^2_{\text{target}}$ at each L/a and am

- Obtain the corresponding $\beta(g^2(t_0/a^2, L/a, am))$

- Extrapolate t_0 and β at fixed value of g^2_{target}:
 - Infinite volume limit $L/a \to \infty$
 - Chiral limit $am \to 0$
 - Continuum limit $a^2/t_0 \to 0$

- Repeat at another g^2_{target}
An alternative Lattice approach for β-function in the χSB phase

Chik Him (Ricky) Wong

Outline
Review
Alternative approach
Application example
Conclusion

[Fodor et al, LATTICE 2017(2017)]

- Along the flow: Obtain $\beta(g^2) = -\mu^2 \frac{dg^2}{d\mu^2} = t \frac{dg^2(t)}{dt}$
 Approximated by arbitrarily small $dt = \varepsilon$:

 $$\frac{dg^2}{dt} \bigg|_t = \frac{1}{12\varepsilon} (-g^2(t + 2\varepsilon) + 8g^2(t + \varepsilon) - 8g^2(t - \varepsilon)$$

 $$+ g^2(t - 2\varepsilon)) + O(\varepsilon^4)$$

- Choose $g^2 = g^2_{\text{target}}$, determine t_0 such that
 $g^2(t_0/a^2, L/a, am) = g^2_{\text{target}}$ at each L/a and am
- Obtain the corresponding $\beta(g^2(t_0/a^2, L/a, am))$
- Extrapolate t_0 and β at fixed value of g^2_{target}:
 - Infinite volume limit $L/a \to \infty$
 - Chiral limit $am \to 0$
 - Continuum limit $a^2/t_0 \to 0$
- Repeat at another g^2_{target}
Application example: \(\beta \)-function of the Sextet model

- **SU(3) Gauge Theory with** \(N_f = 2 \) fermions in Two-index Symmetric Representation

- Our previous studies show \(\chi \)SB behaviors, e.g. Hadron spectrum with pseudoscalars as Goldstone bosons of \(\chi \)SB and non-vanishing Goldstone decay constant in the chiral limit [Fodor et al EPJ Web Conf. 175 08027 (2018)]

- **SSC:**
 - HMC gauge action: Symanzik, 2 steps of \(\rho = 0.15 \) stout
 - Flow gauge action: Symanzik
 - Discretization of E: Clover

- **Target:** \(g^2(t_0/a^2, L/a, am) = g^2_{\text{target}} = 6.7 \)
 - chosen such that it is attainable across all ensembles
 - Along the flow: Error in \(t_0/a^2 \) increases, but cutoff effect of \(\beta \) decreases
Application example:
\(\beta \)-function of the Sextet model

- \(SU(3) \) Gauge Theory with \(N_f = 2 \) fermions in Two-index Symmetric Representation
- Our previous studies show \(\chi SB \) behaviors, e.g. Hadron spectrum with pseudoscalars as Goldstone bosons of \(\chi SB \) and non-vanishing Goldstone decay constant in the chiral limit [Fodor et al EPJ Web Conf. 175 08027 (2018)]
- SSC:
 - HMC gauge action: Symanzik, 2 steps of \(\rho = 0.15 \) stout
 - Flow gauge action: Symanzik
 - Discretization of E: Clover
- Target: \(g^2(t_0/a^2, L/a, am) = g_{\text{target}}^2 = 6.7 \)
 - chosen such that it is attainable across all ensembles
 - Along the flow: Error in \(t_0/a^2 \) increases, but cutoff effect of \(\beta \) decreases
Application example: \(\beta\)-function of the Sextet model

- **SU(3) Gauge Theory with** \(N_f = 2\) fermions in Two-index Symmetric Representation
- Our previous studies show \(\chi\)SB behaviors, e.g. Hadron spectrum with pseudoscalars as Goldstone bosons of \(\chi\)SB and non-vanishing Goldstone decay constant in the chiral limit [Fodor et al EPJ Web Conf. 175 08027 (2018)]
- **SSC:**
 - HMC gauge action: Symanzik, 2 steps of \(\rho = 0.15\) stout
 - Flow gauge action: Symanzik
 - Discretization of E: Clover
- **Target:** \(g^2(t_0/a^2, L/a, am) = g_{\text{target}}^2 = 6.7\)
 - chosen such that it is attainable across all ensembles
 - Along the flow: Error in \(t_0/a^2\) increases, but cutoff effect of \(\beta\) decreases
Application example:

\(\beta \)-function of the Sextet model

- **SU(3) Gauge Theory with** \(N_f = 2 \) **fermions in Two-index Symmetric Representation**

- Our previous studies show \(\chi \)SB behaviors, e.g. Hadron spectrum with pseudoscalars as Goldstone bosons of \(\chi \)SB and non-vanishing Goldstone decay constant in the chiral limit [Fodor et al EPJ Web Conf. 175 08027 (2018)]

- **SSC:**
 - HMC gauge action: Symanzik, 2 steps of \(\rho = 0.15 \) stout
 - Flow gauge action: Symanzik
 - Discretization of E: Clover

- **Target:** \(g^2(t_0/a^2, L/a, a m) = g^2_{\text{target}} = 6.7 \)
 - chosen such that it is attainable across all ensembles
 - Along the flow: Error in \(t_0/a^2 \) increases, but cutoff effect of \(\beta \) decreases
Application example:

β-function of the Sextet model

- **$SU(3)$ Gauge Theory with $N_f = 2$ fermions in Two-index Symmetric Representation**

- Our previous studies show χSB behaviors, e.g. Hadron spectrum with pseudoscalars as Goldstone bosons of χSB and non-vanishing Goldstone decay constant in the chiral limit [Fodor et al EPJ Web Conf. 175 08027 (2018)]

- **SSC:**
 - HMC gauge action: Symanzik, 2 steps of $\rho = 0.15$ stout
 - Flow gauge action: Symanzik
 - Discretization of E: Clover

- **Target:** $g^2(t_0/a^2, L/a, am) = g_{\text{target}}^2 = 6.7$
 - chosen such that it is attainable across all ensembles
 - Along the flow: Error in t_0/a^2 increases, but cutoff effect of β decreases
Application example:
\(\beta\)-function of the Sextet model

- **SU(3) Gauge Theory with** \(N_f = 2\) **fermions in Two-index Symmetric Representation**
- **Our previous studies show** \(\chi\)SB **behaviors, e.g. Hadron spectrum with pseudoscalars as Goldstone bosons of** \(\chi\)SB **and non-vanishing Goldstone decay constant in the chiral limit** [Fodor et al EPJ Web Conf. 175 08027 (2018)]
- **SSC:**
 - HMC gauge action: Symanzik, 2 steps of \(\rho = 0.15\) stout
 - Flow gauge action: Symanzik
 - Discretization of E: Clover
- **Target:** \(g^2(t_0/a^2, L/a, am) = g^2_{\text{target}} = 6.7\)
 - chosen such that it is attainable across all ensembles
 - Along the flow: Error in \(t_0/a^2\) increases, but cutoff effect of \(\beta\) decreases
Application example: \(\beta\)-function of the Sextet model

SU(3) Gauge Theory with \(N_f = 2\) **fermions in Two-index Symmetric Representation**

Our previous studies show \(\chi\)SB behaviors, e.g. Hadron spectrum with pseudoscalars as Goldstone bosons of \(\chi\)SB and non-vanishing Goldstone decay constant in the chiral limit [Fodor et al EPJ Web Conf. 175 08027 (2018)]

SSC:
- HMC gauge action: Symanzik, 2 steps of \(\rho = 0.15\) stout
- Flow gauge action: Symanzik
- Discretization of \(E\): Clover

Target: \(g^2(t_0/a^2, L/a, am) = g^2_{\text{target}} = 6.7\)
- chosen such that it is attainable across all ensembles
- Along the flow: Error in \(t_0/a^2\) increases, but cutoff effect of \(\beta\) decreases
Application example: \(\beta \)-function of the Sextet model

- **SU(3) Gauge Theory with** \(N_f = 2 \) **fermions in Two-index Symmetric Representation**

- Our previous studies show \(\chi \)SB behaviors, e.g. Hadron spectrum with pseudoscalars as Goldstone bosons of \(\chi \)SB and non-vanishing Goldstone decay constant in the chiral limit [Fodor et al EPJ Web Conf. 175 08027 (2018)]

- **SSC:**
 - HMC gauge action: Symanzik, 2 steps of \(\rho = 0.15 \) stout
 - Flow gauge action: Symanzik
 - Discretization of E: Clover

- **Target:** \(g^2(t_0/a^2, L/a, am) = g^2_{\text{target}} = 6.7 \)
 - chosen such that it is attainable across all ensembles
 - Along the flow: Error in \(t_0/a^2 \) increases, but cutoff effect of \(\beta \) decreases
Applicaiton example: \(\beta \)-function of the Sextet model

- **SU(3) Gauge Theory with \(N_f = 2 \) fermions in Two-index Symmetric Representation**

- Our previous studies show \(\chi \)SB behaviors, e.g. Hadron spectrum with pseudoscalars as Goldstone bosons of \(\chi \)SB and non-vanishing Goldstone decay constant in the chiral limit [Fodor et al EPJ Web Conf. 175 08027 (2018)]

- **SSC:**
 - HMC gauge action: Symanzik, 2 steps of \(\rho = 0.15 \) stout
 - Flow gauge action: Symanzik
 - Discretization of E: Clover

- **Target:** \(g^2(t_0/a^2, L/a, am) = g_{target}^2 = 6.7 \)
 - chosen such that it is attainable across all ensembles
 - Along the flow: Error in \(t_0/a^2 \) increases, but cutoff effect of \(\beta \) decreases
Application example: \(\beta \)-function of the Sextet model

- **Example:**
 \(56^3 \times 96, \ 6/g_0^2 = 3.20, \ am = 0.001 \Leftrightarrow t_0/a^2 = 5.487 \pm 0.077 \)

- **Approximate derivative**
 \(\varepsilon = 0.05 \Rightarrow \beta(t_0) = t \left(\frac{dg^2}{dt} \right) = 0.753 \pm 0.019 \)
Application example: β-function of the Sextet model

Example:

\[56^3 \times 96, \ 6/g_0^2 = 3.20, \ am = 0.001 \leftrightarrow t_0/a^2 = 5.487 \pm 0.077 \]

Approximate derivative

\[\varepsilon = 0.05 \Rightarrow \beta(t_0) = t \left(\frac{dg^2}{dt} \right) = 0.753 \pm 0.019 \]
Application example: \(\beta \)-function of the Sextet model

- Infinite volume limit using \(\chi \)PT [Bar and Golterman, Phys. Rev. D 89, 034505 (2014)]

- Point-like source approximation \(\sqrt{8t_0} M_\pi \ll 1 \)
 \(\Rightarrow \) Finite volume correction by wrap-around Goldstone bosons
 \(g_1(M_\pi L_t, \eta = L_t/L_s) \)

- Infinite volume limit of \(M_\pi \): \(aM_\pi = 0.08118 \pm 0.00018 \)

\[
M_\pi (L) = M_\pi + c_1 \cdot g_1(M_\pi L, \eta)
\]
\[
M_\pi = 0.08118 \pm 0.00018
c_1 = 0.0175 \pm 0.0019
\]
\[
\chi^2/dof= 0.06 \quad Q= 0.81
\]

fitted volumes: \(40^3 \times 80, 48^3 \times 96, 56^3 \times 96 \)
Application example:

β-function of the Sextet model

- Infinite volume limit using χPT [Bar and Golterman, Phys. Rev. D 89, 034505 (2014)]
- Point-like source approximation $\sqrt{8t_0} M_\pi \ll 1$
 \Rightarrow Finite volume correction by wrap-around Goldstone bosons $g_1(M_\pi L, \eta = L_t/L_s)$
- Infinite volume limit of M_π: $aM_\pi = 0.08118 \pm 0.00018$
Application example: \(\beta \)-function of the Sextet model

- Infinite volume limit using \(\chi \)PT [Bar and Golterman, Phys. Rev. D 89, 034505 (2014)]
- Point-like source approximation \(\sqrt{8t_0} M_\pi \ll 1 \)
 \[\Rightarrow \] Finite volume correction by wrap-around Goldstone bosons \(g_1(M_\pi L_t, \eta = L_t/L_s) \)
- Infinite volume limit of \(M_\pi \): \(aM_\pi = 0.08118 \pm 0.00018 \)
Application example: \(\beta\)-function of the Sextet model

- Infinite volume limit using \(\chi PT\) (ignoring the effects of low lying \(0^{++}\) scalar)
- Point-like source approximation \(\sqrt{8t_0} \, M_\pi << 1\)
 \(\Rightarrow\) Finite volume correction by wrap-around Goldstone bosons \(g_1(M_\pi L, \eta = L_t/L_s)\)

Graphs

- **Left graph**:
 \[t_0(L) = t_0 + c_1 \cdot g_1(M_\pi L, \eta) \]
 \[t_0 = 5.36 \pm 0.10 \quad g_1 \text{ fitted} \]
 \[c_1 = 2.15 \pm 0.61 \]
 \[M_\pi = 0.08118 \text{ (18)} \quad \text{input} \]
 \[\chi^2/\text{dof} = 0.50 \quad Q = 0.48 \]

- **Right graph**:
 \[\beta(t) = t \, \frac{d\beta(t)}{dt} \]
 \[\beta(L) = \beta + c_i \cdot g_1(M_\pi L, \eta) \]
 \[\beta = 0.774 \pm 0.017 \]
 \[c_i = -0.356 \pm 0.084 \]
 \[M_\pi = 0.08118 \text{ (18)} \quad \text{input} \]
 \[\chi^2/\text{dof} = 0.24 \quad Q = 0.63 \]
Application example: \(\beta \)-function of the Sextet model

- Infinite volume limit using \(\chi \)PT (ignoring the effects of low lying \(0^{++} \) scalar)
- Point-like source approximation \(\sqrt{8t_0} M_\pi \ll 1 \)
 \[\Rightarrow \] Finite volume correction by wrap-around Goldstone bosons
 \[g_1(M_\pi L, \eta = L_t / L_s) \]

\[\begin{align*}
 t_0(L) &= t_0 + c_1 \cdot g_1(M_\pi L, \eta) \\
 t_0 &= 5.36 \pm 0.10 \quad g_1 \text{ fitted} \\
 c_1 &= 2.15 \pm 0.61 \\
 M_\pi &= 0.08118 (18) \quad \text{input} \\
 \chi^2 / \text{dof} &= 0.50 \quad Q = 0.48 \\
\end{align*} \]
Application example: \(\beta \)-function of the Sextet model

- Chiral limit using \(\chi \)PT [Bar and Golterman, Phys. Rev. D 89, 034505 (2014)] (ignoring the effects of low lying \(0^{++} \) scalar)
- Point-like source approximation \(\sqrt{8t_0} M_\pi << 1 \)
 \[t_0 = t_0^{(M_\pi=0)} (1 + k_1 \frac{M_\pi^2}{(4\pi f)^2} + \ldots) \]
 \[\beta(t_0) = \beta(t_0^{(M_\pi=0)}) (1 + l_1 \frac{M_\pi^2}{(4\pi f)^2} + \ldots) \]

- In this analysis, only leading order \((M_\pi^2) \) is considered
- \(M_\pi = 2Bm \Rightarrow \) Linear in \(m \) for leading order
- Ansatz:
 \[t_0 = t_0^{(m=0)} (1 + c_1 m), \]
 \[\beta(t_0) = \beta(t_0^{(m=0)}) (1 + d_1 m) \]
Application example:
β-function of the Sextet model

- **Chiral limit using χPT** [Bar and Golterman, Phys. Rev. D 89, 034505 (2014)] (ignoring the effects of low lying 0^{++} scalar)

 - **Point-like source approximation** $\sqrt{8t_0} M_\pi << 1$

 $$t_0 = t_0^{(M_\pi=0)} (1 + k_1 \frac{M_\pi^2}{(4\pi f)^2} + \ldots)$$

 $$\beta(t_0) = \beta(t_0^{(M_\pi=0)}) (1 + l_1 \frac{M_\pi^2}{(4\pi f)^2} + \ldots)$$

- In this analysis, only leading order (M_π^2) is considered

- $M_\pi = 2Bm \Rightarrow$ Linear in m for leading order

- **Ansatz:**

 $$t_0 = t_0^{(m=0)} (1 + c_1 m),$$

 $$\beta(t_0) = \beta(t_0^{(m=0)}) (1 + d_1 m)$$
Application example: \(\beta\)-function of the Sextet model

- Chiral limit using \(\chiPT\) [Bar and Golterman, Phys. Rev. D 89, 034505 (2014)] (ignoring the effects of low lying \(0^{++}\) scalar)

- Point-like source approximation \(\sqrt{8t_0}M_\pi << 1\)

\[
t_0 = t_0^{(M_\pi=0)} \left(1 + k_1 \frac{M_\pi^2}{(4\pi f)^2} + \ldots \right)
\]

\[
\beta(t_0) = \beta(t_0^{(M_\pi=0)}) \left(1 + l_1 \frac{M_\pi^2}{(4\pi f)^2} + \ldots \right)
\]

- In this analysis, only leading order \((M_\pi^2)\) is considered
- \(M_\pi = 2Bm \Rightarrow \text{Linear in } m \text{ for leading order}

- Ansatz:

\[
t_0 = t_0^{(m=0)} (1 + c_1 m),
\]

\[
\beta(t_0) = \beta(t_0^{(m=0)}) (1 + d_1 m)
\]
Application example:
β-function of the Sextet model

- **Chiral limit using χPT** [Bar and Golterman, Phys. Rev. D 89, 034505 (2014)] (ignoring the effects of low lying 0^{++} scalar)
- **Point-like source approximation** $\sqrt{8}t_0 M_\pi << 1$

 $$t_0 = t_0^{(M_\pi=0)} \left(1 + k_1 \frac{M_\pi^2}{(4\pi f)^2} + \ldots \right)$$

 $$\beta(t_0) = \beta(t_0^{(M_\pi=0)}) \left(1 + l_1 \frac{M_\pi^2}{(4\pi f)^2} + \ldots \right)$$

- In this analysis, only leading order (M_π^2) is considered
- $M_\pi = 2Bm$ ⇒ Linear in m for leading order
- **Ansatz:**

 $$t_0 = t_0^{(m=0)} \left(1 + c_1 m\right),$$

 $$\beta(t_0) = \beta(t_0^{(m=0)}) \left(1 + d_1 m\right)$$
Application example: \(\beta \)-function of the Sextet model

- Chiral limit using \(\chi PT \) [Bar and Golterman, Phys. Rev. D 89, 034505 (2014)] (ignoring the effects of low lying \(0^{++} \) scalar)
- Point-like source approximation \(\sqrt{8t_0} M_\pi << 1 \)

\[
t_0 = t_0^{(M_\pi=0)} \left(1 + k_1 \frac{M_\pi^2}{(4\pi f)^2} + \ldots \right)
\]

\[
\beta(t_0) = \beta(t_0^{(M_\pi=0)}) \left(1 + l_1 \frac{M_\pi^2}{(4\pi f)^2} + \ldots \right)
\]

- In this analysis, only leading order (\(M_\pi^2 \)) is considered
- \(M_\pi = 2Bm \Rightarrow \text{Linear in } m \text{ for leading order} \)
- Ansatz:

\[
t_0 = t_0^{(m=0)} \left(1 + c_1 m \right),
\]

\[
\beta(t_0) = \beta(t_0^{(m=0)}) \left(1 + d_1 m \right)
\]
Application example:
β-function of the Sextet model

Chiral limit using χPT

\[t_0(m) = t_0(0) + c_1 \cdot m \]
\[t_0(0) = 6.20 \pm 0.14 \]
\[c_1 = -857 \pm 87 \]

\[\chi^2/\text{dof} = 0.06 \quad Q = 0.81 \]

\[\beta(m) = \beta(0) + c_1 \cdot m \]
\[\beta(0) = 0.614 \pm 0.032 \]
\[c_1 = 164 \pm 21 \]

\[\chi^2/\text{dof} = 0.075 \quad Q = 0.78 \]
Application example: \(\beta \)-function of the Sextet model

- Chiral limit using \(\chi \)PT

\[
\begin{align*}
\beta_0(m) &= \beta_0(0) + c_1 \cdot m \\
\beta_0(0) &= 10.482 \pm 0.23 \\
c_1 &= -1.76e+03 \pm 146
\end{align*}
\]

\[
\chi^2/\text{dof} = 0.31 \quad Q = 0.58
\]

- SSC \(\beta(m) \) linear chiral fit \(g^2 = 6.7 \) \(\beta = 3.25 \)

\[
\begin{align*}
\beta(m) &= \beta(0) + c_1 \cdot m \\
\beta(0) &= 0.563 \pm 0.019 \\
c_1 &= 156 \pm 11
\end{align*}
\]

\[
\chi^2/\text{dof} = 0.12 \quad Q = 0.72
\]
Application example: \(\beta \)-function of the Sextet model

Chiral limit using \(\chiPT \)

- Analysis of new data is ongoing in order to improve all the results, which will remain consistent with the above.
Application example:

β-function of the Sextet model

- **Chiral limit using χPT**

 ![Graph 1](image1.png)
 ![Graph 2](image2.png)

- **Analysis of new data is ongoing in order to improve all the results, which will remain consistent with the above.**
Application example: \(\beta \)-function of the Sextet model

- Continuum limit
 \[
 \beta(g_{\text{target}}, a^2/t_0) = \beta(g_{\text{target}}) + k \frac{a^2}{t_0}
 \]

- Error of \(t_0 \) is taken into account by
 \[
 \chi^2 = \sum_k \left[\frac{(X_k - \langle x \rangle)^2}{\sigma^2_{x,k}} + \frac{(Y_k - \langle y \rangle)^2}{\sigma^2_{y,k}} \right]
 \]
 \[
 x = a^2/t_0, X = \langle x \rangle; \ y = \beta, Y = \langle y \rangle; \ \sigma^2 \text{'s: variances} \quad \text{[Krystek and Anton, Measurement Science and Technology 18, 3438 (2007)]}
 \]
Application example: β-function of the Sextet model

- **Continuum limit**
 \[\beta(g_{\text{target}}^2,\frac{a^2}{t_0}) = \beta(g_{\text{target}}^2) + k\frac{a^2}{t_0} \]

\[
\begin{align*}
\beta(g^2,\frac{a^2}{t_0}) &= \beta(g^2) + c \cdot \frac{a^2}{t_0} \\
\beta(g^2) &= 0.548 \pm 0.047 \\
c &= 0.321 \pm 0.44 \\
\chi^2/dof &= 1.61 \quad Q = 0.2
\end{align*}
\]

- **Error of t_0 is taken into account by**
 \[
 \chi^2 = \sum_k \left[\frac{(X_k - x_k)^2}{\sigma_{x,k}^2} + \frac{(Y_k - y_k)^2}{\sigma_{y,k}^2} \right]
 \]

 \[x = \frac{a^2}{t_0}, X = \langle x \rangle; \quad y = \beta, Y = \langle y \rangle; \quad \sigma's : \text{variances} \quad [\text{Krystek and Anton, Measurement Science and Technology 18, 3438 (2007)}] \]
Application example: \(\beta \)-function of the Sextet model

- The new p-regime \(\beta \)-function is like \(c \rightarrow 0, s \rightarrow 1 \) in step scaling, but they are different schemes
 \(\Rightarrow \) a bridging between the two has to be done, despite that they seem to be close to each other, possibly due to the insensitivity of \(c \) and \(s \) values of step scaling when \(c \) and \(s \) are small enough
Conclusion

An alternative approach of computing non-perturbative β-function of models in χSB phase is presented

- It provides a new tool to probe and test χSB behaviors by bridging p-regime simulations and step scaling β-function
- We can now recycle p-regime simulations on β-function calculation

Possible improvements:

- The method was based on χPT ignoring the existence of light 0^{++} scalars near the Conformal Window. The effect of taking this into account is under investigation
- A simultaneous chiral and continuum limit would eliminate the ambiguity of the order of the limits
Conclusion

An alternative approach of computing non-perturbative β-function of models in χSB phase is presented

- It provides a new tool to probe and test χSB behaviors by bridging p-regime simulations and step scaling β-function
- We can now recycle p-regime simulations on β-function calculation

Possible improvements:

- The method was based on χPT ignoring the existence of light 0^{++} scalars near the Conformal Window. The effect of taking this into account is under investigation
- A simultaneous chiral and continuum limit would eliminate the ambiguity of the order of the limits
Conclusion

- An alternative approach of computing non-perturbative β-function of models in χSB phase is presented
 - It provides a new tool to probe and test χSB behaviors by bridging p-regime simulations and step scaling β-function
 - We can now recycle p-regime simulations on β-function calculation
- Possible improvements:
 - The method was based on χPT ignoring the existence of light 0^++ scalars near the Conformal Window. The effect of taking this into account is under investigation
 - A simultaneous chiral and continuum limit would eliminate the ambiguity of the order of the limits
An alternative approach of computing non-perturbative β-function of models in χSB phase is presented
- It provides a new tool to probe and test χSB behaviors by bridging p-regime simulations and step scaling β-function
- We can now recycle p-regime simulations on β-function calculation

Possible improvements:
- The method was based on χPT ignoring the existence of light 0^{++} scalars near the Conformal Window. The effect of taking this into account is under investigation
- A simultaneous chiral and continuum limit would eliminate the ambiguity of the order of the limits
An alternative approach of computing non-perturbative β-function of models in χSB phase is presented

- It provides a new tool to probe and test χSB behaviors by bridging p-regime simulations and step scaling β-function
- We can now recycle p-regime simulations on β-function calculation

Possible improvements:

- The method was based on χPT ignoring the existence of light 0^{++} scalars near the Conformal Window. The effect of taking this into account is under investigation
- A simultaneous chiral and continuum limit would eliminate the ambiguity of the order of the limits
An alternative approach of computing non-perturbative β-function of models in χSB phase is presented

- It provides a new tool to probe and test χSB behaviors by bridging p-regime simulations and step scaling β-function
- We can now recycle p-regime simulations on β-function calculation

Possible improvements:

- The method was based on χPT ignoring the existence of light 0^{++} scalars near the Conformal Window. The effect of taking this into account is under investigation
- A simultaneous chiral and continuum limit would eliminate the ambiguity of the order of the limits