Collider & Cosmological Signatures of Hidden Naturalness QCD

Yuhsin Tsai University of Maryland

Lattice for BSM, April 5, 2018

Hidden Naturalness scenario

One solution to the hierarchy problem: Supersymmetry

Super particle loops cancel the divergence

Partner fields in a different gauge sector

A concrete example: Twin Higgs

Chacko, Goh, Harnik (2005)

Study Dark Particles through gravity perturbation

Collider Signature from Hidden Naturalness

Production & decay of SM Higgs @ LHC

SM B-mesons

(quark/anti-quark bound state)

Higgs decay into mirror particles

Higgs decay into mirror particles

Pierce, Shakya, YT, Zhao (2017)

Twin hadrons **SLOWLY** decay into SM particles

If the coupling is so small => Long-lived particles

``Naturalness" predicts twin particle masses

• Twin sector has the same gauge / top yukawa couplings

``Naturalness" predicts twin particle masses

- Twin sector has the same gauge / top yukawa couplings
- satisfy Higgs coupling constraint while remaining natural (better than 10% tuning) $3 \le v_{twin}/v_{SM} \le 5$

``Naturalness" predicts twin particle masses

- Twin sector has the same gauge / top yukawa couplings
- satisfy Higgs coupling constraint while remaining natural (better than 10% tuning) $3 \le v_{\rm twin}/v_{\rm SM} \le 5$
- can estimate the confinement scale from RG running (~ 5 GeV minimal TH)

$$m_{\hat{G}_{0^{++}}} \approx 6.8 \,\hat{\Lambda}_3 \qquad \qquad m_{(\hat{b}\bar{\hat{b}})} \approx 2m_{\hat{b}} + \mathcal{O}(1) \,\hat{\Lambda}_3$$

Morningstar, Peardon (1999) Chen, Alexandru, Dong, Draper, Horvath (2006)

However, need more precise number for twin hadron decay

The result is extremely sensitive to glueball mass/decay constant!

Lattice result determines if we can see collider signals or not

$$c\tau_{0^{++}} \sim 18 \,\mathrm{m} \times \left(\frac{10 \,\mathrm{GeV}}{m_{0^{++}}}\right)^7 \left(\frac{v_{\mathrm{twin}}}{750 \,\mathrm{GeV}}\right)^4$$

$$4\pi \,\hat{\alpha}_{\text{QCD}} \,f_0 = 3.06 \,m_{0^{++}}^3$$

Craig, Katz, Strassler, Sundrum (2015)

Similarly for bottomonium decay

$$\hat{b} \longrightarrow \mu^+$$

 $\hat{b} \longrightarrow \mu^-$

$$\begin{aligned} c\tau_{\hat{\Upsilon}} \simeq 1.5 \,\mathrm{cm} \, \left(\frac{m_b}{m_{\hat{b}}}\right)^3 \left(\frac{m_{\hat{A}}}{100 \,\mathrm{GeV}}\right)^4 \left(\frac{10^{-3}}{\epsilon}\right)^2 \left(\frac{5 \,\mathrm{GeV}}{\Lambda}\right)^2 \left[\left(\frac{\sqrt{s}}{3m_{\hat{b}}}\right)^2 + \frac{2}{9}\right]^{-1} \\ (m_{\hat{b}} \gg \Lambda), \\ c\tau_{\hat{\Upsilon}} \simeq 1.3 \,\mathrm{cm} \, \left(\frac{m_{\hat{A}}}{100 \,\mathrm{GeV}}\right)^4 \left(\frac{10^{-3}}{\epsilon}\right)^2 \left(\frac{5 \,\mathrm{GeV}}{\Lambda}\right)^5 \left(\frac{\sqrt{s}}{3\Lambda}\right)^{-2} \\ (m_{\hat{b}} \ll \Lambda), \end{aligned}$$

Cheng, Jung, Salvioni, YT (2015)

Other uncertainty, showering & hadronization

Twin hadron multiplicity? Relative number between different hadrons? Energy distribution? ...

Cosmological Signature from Hidden Naturalness

A long time ago, when T ~ MeV (~1 sec)

GARDIANS OF THE ELECTROWEAK FORCE

A long time ago, in a hidden universe that is so close to us

There are twin particles maintaining the stability of the Universe

SM (p, n, e, γ, ν) Mirror $(\hat{p}, \hat{n}, \hat{e}, \hat{\gamma}, \hat{\nu})$

Big-bang Nucleosynthesis (~1 sec, T ~ MeV)

Nucleosynthesis

Two important BBN processes

A rough estimation of twin baryon masses

twin neutron/proton mass splitting?

 $\frac{m_{\hat{p}}}{m_p} \approx \frac{m_{\hat{n}}}{m_n} \approx \frac{\Lambda_{QCD_B}}{\Lambda_{QCD_A}} \approx 0.68 + 0.41 \log(1.32 + v_B/v_A)$ from RGE

twin deuterium binding energy?

$$\frac{\Delta M_{\hat{n}\hat{p}}}{\Delta M_{np}} \approx 1.68 v_B / v_A - 0.68, \qquad \Delta M_{np} = 1.29 \,\mathrm{MeV}.$$

from lattice result, Borsanyi et al. (2014)

For $v_B/v_A = 3$, twin proton ~ 30% heavier than SM proton twin neutron/proton splitting ~ 5.6 MeV

Mirror Deuterium Bottleneck

Mirror helium dominates twin matter density

Chacko, Curtin, Geller, YT (1803.03263)

Mirror: ~ 75% mass is in mirror He

SM: ~ 75% mass is in Hydrogen

Mirror helium dominates twin matter density

Chacko, Curtin, Geller, YT (1803.03263)

Mirror: ~ 75% mass is in mirror He SM: ~ 75% mass is in Hydrogen

The result will determine the Large Scale Structure of Universe

Era for the Large Scale Structure & CMB

Structure formation of collision-less DM

higher density -> larger gravity -> even higher density...

Large Scale Structure of the Universe

Density Perturbation

$$\delta_{i} \equiv \frac{\delta \rho_{i}}{\bar{\rho}_{i}} = \text{DM, } \gamma, b, \nu$$

Space Time

Matter power spectrum of the Universe

$$P(k)_s \propto k^{-3} \langle \delta_s(k,a)^2 \rangle$$

DES: 1507.05552

Density Perturbation

$$\delta_{i} \equiv \frac{\delta \rho_{i}}{\bar{\rho}_{i}} = \text{DM, } \gamma, b, \nu$$

Fourier transform into frequency modes

 $\delta_i(x,a) \to \delta_i(k,a)$

Structure formation of collision-less DM

higher density -> larger gravity -> even higher density...

Structure formation of mirror baryons

The scattering forbids mirror baryons to form structure

Twin baryon acoustic oscillations (TBAO) suppress matter density perturbation

Quantify the suppression of matter structure

With mirror oscillations
$$\delta_{tot}(k) = \sum_{i=\chi,\hat{b},p} (\Omega_i/\Omega_m) \, \delta_i(k),$$
P.S. Ratio $(k) \equiv \frac{\delta_{tot}^2(k) \Big|_{\Lambda \text{CDM} + \text{MTH}}}{\delta_{tot}^2(k) \Big|_{\Lambda \text{CDM} + \text{DR}}}$ Without mirror oscillationsWithout mirror oscillations

Suppression of the Large Scale Structure

Effect is sensitive to baryon composition

Chacko, Curtin, Geller, YT (1803.03263)

Precision measurement of the LSS

Precent level precision in ~ 10 years

Large Scale Structure as dark atom spectroscopy

Conclusion

- Hidden Naturalness scenarios solve the hierarchy problem and provide non-trivial DM model with a dark QCD
- We can use cosmological data to examine the idea, or design
 Long-lived Particle searches at colliders to look for twin hadrons
- Both of the cosmology & collider signatures are highly sensitive to hidden hadron mass/decay constant from lattice calculations