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Outline

A four-fermion lattice model
Mass generation without breaking any symmetries
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model upon discretization (if time permits)
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Motivation: a (reduced) staggered fermion model

S =
∑

x ,µ ψ
aηµ∆µψ

a − G2

4
∑

x ε
abcdψaψbψcψd

The field ψ(x) is a four component reduced staggered field defined at
each point of a(hyper) cubic lattice.It transforms as fundamental of
SO(4)

SO(4) flavor symmetry and lattice shift symmetries forbid any fermion
bilinear term

Will show that the system has three phases

Massless phase G < G1
c ,narrow broken phase G1

c < G < G2
c , Strong

coupling: massive phase G > G2
c SO(4) symmetry restored
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Fermion/Bosonic propagator at strong coupling

Eitchen and Preskill NPB268 (1985),Golterman NBP395 (1993)

Momentum space

F (p) =
i
√

6G2
∑

µ sinpµ∑
µ sin2pµ+m2

F
B(p) = 8(6G2)

4
∑

µ sin2pµ+m2
B

where m2
F = 4(6G2)− 2 and m2

B = 4(6G2)− 8

In the limit G→∞ G2 < εabcdψ
aψbψcψd > tends to a constant

Fermions are massive at strong coupling.This corresponds to pairing
of elementary fermion ψ with composite fermion Ψa = εabcdψ

bψcψd

Four fermion condensate can be thought of as a bilinear formed from
Ψa and ψa
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Auxiliary field representation

S =
∑

x ,µ ψ
a[ηµ∆µδab + Gφ+ab]ψb + 1

4φ
2
+

We use the isomorphism SO(4) = SU+(2)× SU−(2) for
introducing auxiliary field φab where
φab
+ = P+φ

ab = 1
2(φab + 1

2εabcdφ
cd )

φab
+ is self-dual and transforms under SU+(2) and is a singlet

under SU−(2).
The target manifold of φab

+ is S2

The self-dual nature of φ+ ensures fermion eigenvalues appear in
quartets (λ, λ,−λ,−λ) and hence the Pfaffian arising after integrating

over ψ is real and positive definite- no sign problem

S =
∑

x ,µ ψ
a[ηµ∆µδab + Gφ+ab]ψb + 1

4φ
2
+ − κ

2
∑

x ,µ[φxφx+µ + φxφx−µ]

κ = 0 is our original four-fermion model with symmetric mass
generation
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Coleman-Weinberg effective potential

The question of spontaneous symmetry breaking can be examined by
computing the effective potential for φ+

Seff (φ+) = −1
2

Tr ln(η.∆ + ε(x)Gφ+)

Assume a constant

φ+ = µ

(
iσ2 0
0 iσ2

)
and diagonalize the kinetic operator

Seff (φ+) = −1
4

tr [ln |(∆2
µ −m2)|]

where m = G2µ2 and tr denotes a functional trace

The ε(x) factor is important to get an effective potential of symmetry
breaking type because {ε(x), ηµ∆µ} = 0
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Positivity of Seff

Computing the functional trace in momentum space the effective
potential takes the form

Veff = −1
4

∫
d4p ln | p̃

2
µ+m2

p̃2
µ
| where p̃µ = 2isin(pµ)

The naive expansion gives the quadratic and quartic term with the right
signs for a potential of symmetry breaking type.

Veff = −α
4 (φo

+)2 + β
4 (φo

+)4 where φo
+ denotes VEV of φ+

The symmetry SU+(2) breaks down to U(1)

where α =
∫

d4p 1
p̃2
µ

and β =
∫

d4p 1
p̃2
µ4

This argument doesn’t generalize to non-local SO(4) invariant bilinears
breaking the shift symmetry. To understand the phase structure fully
turn to (RHMC) simulation

Nouman Tariq (Syracuse University) Topology and strongly interacting fermions UC Boulder 2018 7 / 23



Positivity of Seff

Computing the functional trace in momentum space the effective
potential takes the form

Veff = −1
4

∫
d4p ln | p̃

2
µ+m2

p̃2
µ
| where p̃µ = 2isin(pµ)

The naive expansion gives the quadratic and quartic term with the right
signs for a potential of symmetry breaking type.

Veff = −α
4 (φo

+)2 + β
4 (φo

+)4 where φo
+ denotes VEV of φ+

The symmetry SU+(2) breaks down to U(1)

where α =
∫

d4p 1
p̃2
µ

and β =
∫

d4p 1
p̃2
µ4

This argument doesn’t generalize to non-local SO(4) invariant bilinears
breaking the shift symmetry. To understand the phase structure fully
turn to (RHMC) simulation

Nouman Tariq (Syracuse University) Topology and strongly interacting fermions UC Boulder 2018 7 / 23



Positivity of Seff

Computing the functional trace in momentum space the effective
potential takes the form

Veff = −1
4

∫
d4p ln | p̃

2
µ+m2

p̃2
µ
| where p̃µ = 2isin(pµ)

The naive expansion gives the quadratic and quartic term with the right
signs for a potential of symmetry breaking type.

Veff = −α
4 (φo

+)2 + β
4 (φo

+)4 where φo
+ denotes VEV of φ+

The symmetry SU+(2) breaks down to U(1)

where α =
∫

d4p 1
p̃2
µ

and β =
∫

d4p 1
p̃2
µ4

This argument doesn’t generalize to non-local SO(4) invariant bilinears
breaking the shift symmetry. To understand the phase structure fully
turn to (RHMC) simulation

Nouman Tariq (Syracuse University) Topology and strongly interacting fermions UC Boulder 2018 7 / 23



Positivity of Seff

Computing the functional trace in momentum space the effective
potential takes the form

Veff = −1
4

∫
d4p ln | p̃

2
µ+m2

p̃2
µ
| where p̃µ = 2isin(pµ)

The naive expansion gives the quadratic and quartic term with the right
signs for a potential of symmetry breaking type.

Veff = −α
4 (φo

+)2 + β
4 (φo

+)4 where φo
+ denotes VEV of φ+

The symmetry SU+(2) breaks down to U(1)

where α =
∫

d4p 1
p̃2
µ

and β =
∫

d4p 1
p̃2
µ4

This argument doesn’t generalize to non-local SO(4) invariant bilinears
breaking the shift symmetry. To understand the phase structure fully
turn to (RHMC) simulation

Nouman Tariq (Syracuse University) Topology and strongly interacting fermions UC Boulder 2018 7 / 23



Phase structure from numerical simulation
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 (
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)
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κ=0.0,m=0.0

L=12
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< φ2
+ > 1

V
∑

x < χa(x)χb(x)χa(0)χb(0) >

Connected susceptibility χconn = 1
V
∑

x < χa(x)χb(x)χa(0)χb(0) >
χconn ∼ L4 in the transition region G = 1.05

To look for spontaneous symmetry breaking we augment the action
with a symmetry breaking m

∑
x εψ

aψb term and scan in m→ 0 limit
while V →∞
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Narrow broken phase
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Figure: Left : G = 1.05, Right : G = 1.15, Bottom : G = 0.95
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Phase structure with non-zero κ
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The susceptibility peak widens as you move towards negative κ and it
shrinks towards positive κ.
In both cases the four-fermion condensate exists
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Spontaneous symmetry breaking

We repeat the spontaneous symmetry breaking analysis with
κ = −0.05 and κ = 0.05
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No spontaneous symmetry breaking with small positive κ
This gives a preliminary phase diagram with four different phases
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Preliminary Phase Diagram
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Summary and Questions

The κ = 0 system has a narrow broken phase separating the
massless and massive phases

With small positive κ the broken phase vanishes leading to a
continuous transition between the massless and massive phase

Questions
Can the four-fermion phase be induced by strong gauge coupling?
(work in progress)
Can the four-fermion phase be explained through a continuum
model?

A model based on Kähler-Dirac fermions discretizes to the staggered
fermion model studied arXiv:1708.06715v2
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Starting Point
Consider 4 Majorana spinors with action

S =

∫
d4x

4∑
A=1

ψ
A
γ.∂ ψA

The global symmetry is G = SOF (4)× SOLorentz(4) under which

ψ → LαβψB
βF T

BA

Focus on diagonal subgroup D where L = F under which ψ → Ψ with
Ψ a 4× 4 matrix

S =

∫
d4x Tr (Ψ γ.∂Ψ) with Ψ = CΨT C−1 = Ψ

take 4 copies and add SO(4) invariant interaction

δS = −G2
∫

d4x Tr
(

ΨaΨb
)

Tr
(

ΨcΨd
)
εabcd
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Notice ..

Interaction breaks global symmetry G down to diagonal subgroup D
Additional SO(4) symmetry prevents bilinear mass terms

For small G expect four fermi term irrelevant and get 16 massless
Majorana fermions.

Introduce lattice

Ψa =
16∑
b

γx+bχa(x + b) with bµ = 0,1 γx+b =
4∏

µ=1

γ
xµ+bµ
µ

If ∂µ → ∆S
µ and do traces

Staggered action !
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Auxiliary field

S = S0 +

∫
d4x

[
Gφab

+ Tr
(

ΨaΨb
)

+
1
2

(
φab
+

)2
]

where φ+ transforms in adj rep of SU+(2) subgroup of
SO(4) = SU+(2)× SU−(2).

Integrate over fermions Pf (γ.∂ + Gφ+). Additional SU−(2) shows real,
positive. Effective action:

Seff(φ+) =
1
2
φ2
+ −

1
4

tr ln
(
−∂2 + G2φ2

+ + Gγ.∂φ+
)

If φ+ constant find symmetry breaking potential

φa
+ = µna with nana = 1 vacuum manifold S2
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Effective Action
Assume broken phase and expand in powers of 1

m with m = µG

Seff =
1

m2

∫
d4x (∂µna)

2
+

1
m4

∫
d4x

(
εabc∂µna × ∂νnb

)2
+ . . .

Fadeev-Skyrme term - supports solitons

Analysis easier if change variables:

na(x)σa = U†(x)σ3U(x)

Mapping invariant under

Local U(1)

U(x)→ eiσ3β(x)U(x)

Also global SU(2) symmetry: U(x)→ U(x)G
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Effective Action II
Seff =

1
m2

∫
d4x tr

[
(DµU)† (DµU)

]
+

1
m4

∫
d4x F 2

µν

where Dµ = ∂µ + iAµσ3.

Topological defects
As m→∞ set DµU = 0 for large r . Find

Aµ =
i
2

tr
(
∂µUU†σ3

)
and

S = b
∫

d4x
1
4

tr
(
∂µU∂νU†σ3

)2
with

U =

(
α1 + iα2 −α3 + iα4
α3 + iα4 α1 − iα2

)
αi =

xi

r

Hopf map: Π3(S2) = Z
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Role of defects ?

Topological charge gotten from
∫
εµνρλFµνFρλ.

Action
∫

F 2
µν of single defect SHopf ∼ ln V

Recall 2D XY model
Single vortex has log divergent action. Pair of vortices has finite action

and logarithmic interaction

Conjecture something similar here - pairs of Hopf-antiHopf defects
bind in pairs. Play no role for small G but unbind to populate vacuum
as G→∞.
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Fermion mass

GF (x , y) = 〈Ψa(x)Ψa(y)〉

= tr

[
−γµ∂µ + m naσa(
−∂2

µ + m2 + mP
)] (1)

where
P = γµ

(
∂µU†(x)σ3U(x) + U†(x)σ3∂µU(x)

)
Far from core P = 0 and

GF (x , y) =
−γµ∂µ
−� + m2

Fermions acquire mass without breaking symmetries !
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Phase structure

As G increased generically expect 3 phases

G < G1
c free massless fermions. Trivial IR fixed point. Lorentz and

flavor symmetries restored.
G1

c < G < G2
c Phase with broken SO(4) symmetry. Fermion mass

determined by bilinear condensate. Conventional NJL scenario.
G > G2

c Four fermion condensate. Auxiliary field picture -
proliferation of topological defects. Fermions acquire masses
propagating in this background. IR behavior depends on whether
phase transition at G2

c continuous ..
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Summary/Prospects

Introduced a model based of Kähler-Dirac fermions that
discretizes to staggered fermion models studied recently.
In broken phase topological defects are possible. Give an
understanding of how fermions acquire mass at strong coupling
without breaking symmetries.

Critical exponents ?
Nature of continuum symmetries ? Is theory Lorentz invariant ?

Can we use this as mechanism for gapping mirrror states in
Eichten-Preskill approaches to constructing chiral lattice gauge

theories ?
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Thank you!

Collaborators
Simon Catterall , David Schaich

Funding and computing resources
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