Supersymmetry breaking and gauge/gravity duality on the lattice

Raghav G. Jha
(Final Year PhD student)

at Syracuse University

1709.07025 [PRD, in press], 1800.00012 [PRD 97, 054504] and work in progress with Simon Catterall, Joel Giedt, Anosh Joseph, David Schaich & Toby Wiseman

April 6, 2018
Lattice BSM 2018, UC Boulder
Outline

- Motivation and possibilities
- Two dimensional $\mathcal{N} = (2,2)$ SYM – supersymmetry breaking
- Holographic connection - two and three dimensional SYM (16 supercharges)
Why lattice supersymmetry (SUSY) ?

Discretization on the lattice furnishes gauge-invariant regularization of gauge theories and provides non-perturbative insights into

- Gauge/gravity (AdS/CFT) duality - potential non-perturbative definition of string theory
- Finite N regime and large N limit of supersymmetric theories.
- Confinement, phase transitions, symmetry breaking and conformal field theories.
Lattice SUSY: Problem and resolution

Problem
Supersymmetry generalizes Poincaré symmetry by adding spinorial generators Q and \bar{Q} to translations, rotations, boosts.

The algebra includes $Q\bar{Q} + \bar{Q}Q = 2\sigma^\mu P_\mu$, P_μ generates infinitesimal translations, which don’t exist on the lattice. Supersymmetry explicitly broken at the classical level.

Solution
Preserve a subset of SUSY algebra exactly on the lattice. Possible for theories with $Q \geq 2^D$. For ex: $\mathcal{N} = 4$ supersymmetric Yang-Mills (SYM). Methods are based on orbifold construction and topological twisting. I will focus only on the twisted construction in this talk.
<table>
<thead>
<tr>
<th>THEORY</th>
<th>R-SYMMETRY</th>
<th>LATTICE CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 2, Q = 4$</td>
<td>$SO(2) \otimes U(1)$</td>
<td>✓</td>
</tr>
<tr>
<td>$d = 2, Q = 8$</td>
<td>$SO(4) \otimes SU(2)$</td>
<td>✓</td>
</tr>
<tr>
<td>$d = 2, Q = 16$</td>
<td>$SO(8)$</td>
<td>✓</td>
</tr>
<tr>
<td>$d = 3, Q = 4$</td>
<td>$U(1)$</td>
<td></td>
</tr>
<tr>
<td>$d = 3, Q = 8$</td>
<td>$SO(3) \otimes SU(2)$</td>
<td>✓</td>
</tr>
<tr>
<td>$d = 3, Q = 16$</td>
<td>$SO(7)$</td>
<td>✓</td>
</tr>
<tr>
<td>$d = 4, Q = 4$</td>
<td>$U(1)$</td>
<td></td>
</tr>
<tr>
<td>$d = 4, Q = 8$</td>
<td>$SO(2) \otimes SU(2)$</td>
<td></td>
</tr>
<tr>
<td>$d = 4, Q = 16$</td>
<td>$SO(6)$</td>
<td>✓</td>
</tr>
</tbody>
</table>
SUSY breaking : Witten index

To understand susy breaking non-perturbatively, Witten introduced index, W. As it turns out, W can be written as,

$$W = \int_{PBC} \mathcal{D}(\cdots) e^{-S}$$

don’t have a way of evaluating this using simulations

Alternatively : Look for ground state energy as order parameter for breaking
\[\mathcal{N} = (2,2) \text{ SYM in } d=2 \]

The action of continuum \(\mathcal{N} = (2,2) \text{ SYM} \) takes the following \(Q \)-exact form after topological twisting

\[S = \frac{N}{2\lambda} \int d^2 x \Lambda, \]

where

\[\Lambda = \text{Tr} \left(\chi_{\mu\nu} F_{\mu\nu} + \eta [\overline{D}_\mu, D_\mu] - \frac{1}{2} \eta d \right), \]

and \(\lambda = g^2 N \) is the 't Hooft coupling.
The nilpotent supersymmetry transformations associated with the scalar supercharge Q are given by

\[
\begin{align*}
Q A_\mu &= \psi_\mu, \\
Q \psi_\mu &= 0, \\
Q A_\bar{\mu} &= 0, \\
Q \chi_{\mu \nu} &= -\overline{F}_{\mu \nu}, \\
Q \eta &= d, \\
Q d &= 0.
\end{align*}
\]
The four degrees of freedom appearing in this theory are just the twisted fermions \((\eta, \psi_\mu, \chi_{\mu\nu})\) and complexified gauge field \(A_\mu\). The complexified field is constructed from the usual gauge field \(A_\mu\) and the two scalars \(B_\mu\) present in the untwisted theory: \(A_\mu = A_\mu + iB_\mu\). The twisted theory is naturally written in terms of the complexified covariant derivatives

\[
\mathcal{D}_\mu = \partial_\mu + A_\mu, \quad \overline{\mathcal{D}}_\mu = \partial_\mu + \overline{A}_\mu, \quad (1)
\]

and complexified field strengths

\[
\mathcal{F}_{\mu\nu} = [\mathcal{D}_\mu, \mathcal{D}_\nu], \quad \overline{\mathcal{F}}_{\mu\nu} = [\overline{\mathcal{D}}_\mu, \overline{\mathcal{D}}_\nu]. \quad (2)
\]
The action can be written as, \(S = S_B + S_F \), where the bosonic action is

\[
S_B = \frac{N}{2\lambda} \sum_n \text{Tr} \left(-\overline{F}_{\mu\nu}(n)F_{\mu\nu}(n) + \frac{1}{2}[\overline{D}_\mu, D_\mu]^2 \right),
\]

and the fermionic piece

\[
S_F = \frac{N}{2\lambda} \sum_n \text{Tr} \left(-\chi_{\mu\nu}(n)D_{[\mu}\psi_{\nu]}(n) - \eta(n)\overline{D}_\mu\psi_\nu(n) \right).
\]

Also an additional mass term (breaks \(Q \) supersymmetry)

\[
S_{\text{soft}} = \frac{N}{2\lambda} \mu^2 \sum_{n,\mu} \text{Tr} \left(\overline{U}_\mu(n)U_\mu(n) - I_N \right)^2,
\]
Fields on the lattice

\[U_2(n) \quad \psi_2(n) \]

\[F_{12}(n) \quad \chi_{12}(n) \]

\[\bar{U}_2(n) \quad \eta(n) \]

\[\bar{U}_1(n) \quad U_1(n) \quad \psi_1(n) \]
Extrapolations [PRD 97, 054504]

Figure: Left: $\lim_{a \to 0}$, Right: $\lim_{\mu^2 \to 0}$, Bottom: $\lim_{\beta \to \infty}$
Supersymmetry breaking

- Calculate the ground state energy density in the limit $\beta \to \infty$? (why not just do $T=0$ calculation)
- Need to use small mass term μ to control flat directions, which we extrapolate to zero after doing continuum extrapolation ($a \to 0$).
- Upper bound on energy density $\frac{\varepsilon_{\text{VAC}}}{N^2 \lambda} = 0.05(2)$, statistically consistent with zero.

[Similar study done earlier by Kanamori, Sugino and Suzuki based on A-twist Sugino’s action]
Applications to holography - gauge/gravity

Original AdS/CFT correspondence

4D $\mathcal{N} = 4$ $U(N)$ super-Yang-Mills theory associated with N D3-branes, is dual to Type IIB string theory on $AdS_5 \times S_5$ in the large N limit.

More general holographic dualities in lower dimensions

Maximally supersymmetric YM in $p + 1$ dimensions dual to Dp-branes

At low temperatures, and in the decoupling limit: dual description in terms of black holes in Type II A/B supergravity

Decoupling limit: $N \to \infty$ and $t = T/\lambda^{\frac{1}{3-p}} \ll 1$
Maximal SYM for $p < 3$

- Dimensionally reduce lattice $\mathcal{N} = 4$ SYM along $(3-p)$ spatial directions.
- Dimensional reduction: $A_4^* \to A_{p+1}^*$ giving a skewed torus with $\gamma = -1/(p + 1)$ ($\gamma = \cos \theta$).
- 't Hooft coupling (λ) is dimensionful in $p < 3$ dimensions and we construct a dimensionless coupling given by $r_{\text{eff}} = \lambda_p \beta^{3-p}$, where $\beta = 1/T$.
- No phase transition (single de-confined phase) in 1-d QM case, richer structure for $p = 1,2$.
To have a valid SUGRA description, we need:

- Radius of curvature should be large in units of α'. This implies $r_{\text{eff}} \gg 1$.
- String coupling should be small.

We can combine both requirements to get a constraint on the effective dimensionless coupling we can probe for a well-defined SUGRA description ($p < 3$)

$$1 \ll \frac{\lambda_p \beta^{3-p}}{N^{\frac{10-2p}{7-p}}}$$
Various dimensions - Existing works

- $p=0$: [Hanada, Nishimura and Takeuchi in 0706.1647 + Catterall & Wiseman, 0706.3518]
- $p=1$: This talk [Our recent work arXiv: 1709.07025 (PRD, in press), also work done using different action by D. Kadoh.]
- $p=2$: This talk [Preliminary work]

Eventual goal, $p=3$: Thermodynamics of $\mathcal{N} = 4$ SYM. Statement: Can we understand $f(\lambda) \ni, f(0) = 1$ and $f(\infty) = 3/4$?
p=1 : Maximal SYM in (1+1)-dimensions

- Interesting phase structure at finite temperature with a deconfinement transition dual to a gravity transition (between uniform D1 and localized D0 phase with spatial Wilson loop being the order parameter) at strong coupling and large N.
- Different temperature dependence in both phases for free energy (D0 & D1 thermodynamics)
- Can see the transition but can’t determine the order!
Some results (arXiv: 1709.07025)

The transition strengthens as N increases, while showing little sensitivity to the lattice size.

Figure: Spatial Wilson loop magnitude (left) and susceptibility (right) vs. inverse dimensionless temperature $r_\beta = 1/t$ for SU(N) gauge groups with $N = 6, 9$ and 12 on 16×4 and 24×6 lattices (aspect ratio $\alpha = N_x/N_t = 4$).
Figure: Wilson line phases. Uniform distribution (left) and localized distribution (right) corresponding to different black hole phases in the dual theory.
Figure: The critical temperature for different α-lattices (left). D1 phase thermodynamics for $\alpha = 2$ (right). Dashed curve (right) is gravity prediction.
't Hooft coupling has dimensions of energy. Construct $r_{\text{eff}} = \lambda \beta = 1/t$ as dimensionless coupling. Type IIA SUGRA description is valid when the energy scale, $u = r/\alpha'$ (defined as fixed expectation value of a scalar) is in the range shown below:

This translates to the condition (for our dimensionless coupling) as,

$$1 \ll r_{\text{eff}} \ll N^6_5$$
First discussed by [Kabat, Lifshitz and Lowe, hep-th/9910001, hep-th/0105171], the thermal SYM partition function has divergence.

\[I \sim kN \log(f(\zeta)) + N^2 I_{\text{finite}} \]

So technically, one can avoid the issue of divergence if \(N \to \infty \) (another need for large \(N \)) because the finite contribution dominates. For the \(N \) we can access in our numerical simulations, we need to do more!

Use a mass term for the scalar fields in our lattice action to restrict the moduli space and then extract the finite piece carefully and compare to the thermodynamics of Dp-branes.
An example of divergence showing up at $N=4$.
Thermodynamics of D2-branes

For a uniform Dp-brane \(p < 3 \), we have a prediction for free energy density which is [Itzhaki et al., hep-th/9802042, Harmark and Obers, hep-th/0407094],

\[
\mathcal{F} = -k_p N^2 \lambda^{\frac{1+p}{3-p}} t^{\frac{14-2p}{5-p}}
\]

where, \(k \) can be read off the table in the above reference.

<table>
<thead>
<tr>
<th>(p)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_p)</td>
<td>((2^{21} 3^2 5^7 7^{-19} \pi^{14})^{1/5})</td>
<td>(2^4 3^{-4} \pi^{5/2})</td>
<td>((2^{13} 3^5 5^{-13} \pi^8)^{1/3})</td>
<td>(2^{-3} \pi^2)</td>
<td>(2^5 3^{-7} \pi^2)</td>
</tr>
</tbody>
</table>

For our case of \(i.e \ p = 2 \), we get:

\[
\mathcal{F} = -2.492 \ N^2 \lambda^3 t^{\frac{10}{3}}
\]
We focus on calculating the free energy density for the SYM theory on the lattice restricting to uniform D2 phase.

Choose temperatures $t \ll 1$ and large N for multiple lattices.

Computational cost scales as $\sim N^{7/2}$, so we restrict to $N_{\text{maximum}} = 8$ on 8^3, 10^3 and 12^3 lattices.

We need to use small mass regulator ζ (discussed before), which we extrapolate to zero as $\zeta^2 \to 0$.

Publicly available lattice code for arbitrary N (we have explored up to $N=20$ with fermions in 1d, unpublished) : github.com/daschaich/susy
Preliminary numerical results
Preliminary numerical results

\[- \frac{s_{\text{Bos}}}{N^2 \lambda} \]

- \(N=4, 8^3 \)
- \(N=6, 8^3 \)
- \(N=6, 12^3 \)

SUGRA: \(-2.492 \, t^{10/3}\)

\(t = T/\lambda \)
Thank you!
Thank you!

Funding and computing resources
A naïve truncation of $U(N)$ supersymmetric theory to $SU(N)$ does not work at finite-N.

- Breaks the lattice supersymmetry that relates U_a to ψ_a in the $U(N)$ construction.
- Solution: Represent the truncated gauge links as $U_b = e^{i g a A_b}$ to argue that the continuum supersymmetry relating A_a and ψ_a is approximately realized in the large-N limit even at non-zero lattice spacing since $g \rightarrow 0$ in the decoupling limit.
Continuum vs. lattice coupling

The non-orthogonal basis vectors of the A_d^* lattice leads to mismatch in ’t Hooft coupling between lattice and continuum. The target continuum $(p+1)$-SYM coupling ($r_{\tau,\text{cont.}}$) differs from the lattice coupling as,

$$r_{\tau,\text{lattice}} = \frac{(d + 1)^{\frac{4-p}{6-2p}}}{\sqrt{d}} r_{\tau,\text{cont}}$$
\[D_{1L_2(\beta)} \]
\[\text{Tr} \bar{U} = 0 \]
\[\text{Tr} \bar{V} \neq 0 \]
\[\text{Tr} \bar{W} \neq 0 \]

\[D_{2L_2(\beta, L_1)} \]
\[\text{Tr} U = 0 \]
\[\text{Tr} V = 0 \]
\[\text{Tr} W \neq 0 \]

\[\text{Tr} W \neq 0 \] (gravity)
Lower-dimensional sixteen supercharge SYM with apbc has no sign problem.