
Self-Organized Higgs Criticality

Jay Hubisz 
Syracuse University 

Lattice for BSM Physics 2018 
Eröncel, JH, Rigo 1804.00004 [hep-ph] 

U.C. Boulder, April 5

h0
h0 h0



The Standard Model Higgs is 
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Self-organized criticality (SOC)?
• In many pockets of the world, systems are naturally driven to 

(and through) critical points - Self Tuned Phase Transitions 

• Sandpiles - you keep on slowly adding sand, but system 
creates avalanches of grains to maintain same critical slope 

• Earthquake fault lines - techtonic drift builds force slowly, 
culminating in eventual slippage to new equilibrium point 

• Internal market pressures can create bubbles prior to 
financial crashes/“re-adjustment”

Commonality:   
Slow forced (temporal) driving of system to a precipice of catastrophy -  
all length/time scales become important, perturbations exhibit scaling 

 (critical exponents)

Per Bak, Chao Tang, and Kurt Wiesenfeld (1988)

Giudice 2008 “Naturally Speaking” - Can this be part of why Higgs is light?



Complex Scaling Dimensions
• It has been guessed at that (at least some) systems with SOC exhibit 

log-periodicity at threshold of catastrophy (e.g. work of Didier Sornette 
et. al.) 

• The log-periodic power law is the signature of discrete scale invariance 

• Discrete scale invariance is not an “allowed” RG flow 

• The Breitenlohner-Freedman bound is the holographic dual to this RG 
instability - the AdS tachyon 

• Scalar solutions with bulk mass m2 scale like z𝝙 

 

• Time driving = spatial gradients (Relativity) = Breaking of scale inv. (AdS/CFT)

�(�� 4) = m2 Complex for m2 < -4



BKT and Conformality Lost
Kaplan, Lee, Son, Stephanov 2009 
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conformal window

BKT type scaling below critical Nf
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Slowly Driving off the Edge
QCD in/off  

conformal window

BKT scaling  
past critical Nf

Hypothetical Model 
with healthy UV FP

Radiatively driven off CFT  
Fixed point in C-plane

How does theory rectify instability? 
Spontaneously broken ~CFT/TC type Confinement  
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Figure 8: Here we show a cartoon of an approximate CFT dual of our 5D model. On the left
is the picture of fixed points annihilating under continuous variation of some descriptor of the
theory, as explored in [8]. On the right is our picture of quasi-fixed points annihilating under
renormalization group evolution.

given by �UV and �IR. In 5D, the loss of conformality corresponds to the merging of these
two scaling solutions at the Breitenlohner-Freedman bound as the bulk mass is taken below
m2 = �4. Below the BF bound, the theory requires a UV cuto↵, and also predicts an IR
scale associated with rectification of a tachyon instability through condensation of bulk
fields, corresponding in the holographic picture to a VEV for the operator O.

The 5D model we have described has given dynamics to this picture, where what was
an external parameter has been promoted to a coupling in the theory which has nontrivial
RG evolution. In Figure 8, we give a cartoon of what the model we explore achieves. In [8],
in the case that parameters are chosen to put the theory in a conformal window, there
are explicit UV and IR fixed points, both nontrivial. Moving in and out of the conformal
window is achieved by varying those external parameters, with the fixed points merging at
its threshold. In the case of our model, the idea is that the theory begins at a normal IR
fixed point. A small relevant deformation of the theory demotes it to a quasi-fixed point,
and the theory tracks it until the fixed point disappears after annihilating its associated
UV quasi-fixed point. Under further RG flow, scaling dimensions become complex with
a corresponding discrete scaling law, the theory becomes unstable, and the instability is
potentially resolved by condensates. The theory can also begin and remain near the UV
quasi-fixed point, in principle, corresponding to taking the tuned boundary condition for
the bulk scalar that picks out the other slower growing solution.

When the instability is rectified by condensates, the approximate conformal invariance
is broken spontaneously. There are di↵erent options for this breaking, with two operators
in the theory that can pick vacuum expectation values (at least in this model). The Higgs
itself can form a vacuum expectation value, likely along with condensates of the operator
that is driving the theory towards the instability. This option gives a Higgs mass and 4D
e↵ective VEV that is not much suppressed in comparison with the 5D KK scale or its dual
picture compositeness scale. The other option, associated with the massless Higgs we seek,
is that the marginally relevant operator driving the theory instead takes a VEV just at the
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Holographic Conformality Lost
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is the picture of fixed points annihilating under continuous variation of some descriptor of the
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two scaling solutions at the Breitenlohner-Freedman bound as the bulk mass is taken below
m2 = �4. Below the BF bound, the theory requires a UV cuto↵, and also predicts an IR
scale associated with rectification of a tachyon instability through condensation of bulk
fields, corresponding in the holographic picture to a VEV for the operator O.

The 5D model we have described has given dynamics to this picture, where what was
an external parameter has been promoted to a coupling in the theory which has nontrivial
RG evolution. In Figure 8, we give a cartoon of what the model we explore achieves. In [8],
in the case that parameters are chosen to put the theory in a conformal window, there
are explicit UV and IR fixed points, both nontrivial. Moving in and out of the conformal
window is achieved by varying those external parameters, with the fixed points merging at
its threshold. In the case of our model, the idea is that the theory begins at a normal IR
fixed point. A small relevant deformation of the theory demotes it to a quasi-fixed point,
and the theory tracks it until the fixed point disappears after annihilating its associated
UV quasi-fixed point. Under further RG flow, scaling dimensions become complex with
a corresponding discrete scaling law, the theory becomes unstable, and the instability is
potentially resolved by condensates. The theory can also begin and remain near the UV
quasi-fixed point, in principle, corresponding to taking the tuned boundary condition for
the bulk scalar that picks out the other slower growing solution.

When the instability is rectified by condensates, the approximate conformal invariance
is broken spontaneously. There are di↵erent options for this breaking, with two operators
in the theory that can pick vacuum expectation values (at least in this model). The Higgs
itself can form a vacuum expectation value, likely along with condensates of the operator
that is driving the theory towards the instability. This option gives a Higgs mass and 4D
e↵ective VEV that is not much suppressed in comparison with the 5D KK scale or its dual
picture compositeness scale. The other option, associated with the massless Higgs we seek,
is that the marginally relevant operator driving the theory instead takes a VEV just at the
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Two Theories are One:
Scalar Solutions in AdS5:
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�

�±{ scaling dimensions 
at fixed points
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Conjecture of KLSS: 
two solutions are same  
microscopic theory at  

different FP 

fine tune AdS boundary  
theory to hug UV FP

Complex SD’s

BF 
m2=-4



Side Notes: Important!
• Light scalars don’t have to be, and aren’t likely to be, techni-dilatons 

• not natural - requires flat direction in addition to walking = FINE TUNED 

• Higgs looks nothing like a dilaton - couplings set by restoring CI non-lin. 

• Spectrum in low energy theory is function of bulk mass 

• Near BF bound, scalar drops down out of spectrum of KK states/~CFT composites 

•  Alex Pomarol Planck 2017: 
 “Light scalars: From lattice to the LHC via holography” 
no slides and no paper…  but also rel. work by Vecchi: arXiv:1012.3742 

• light 0++ scalar may just be consequence of being near boundary of conformal 
window where operator scaling dim. near critical 

• much easier phenomenologically to interpret light state as Higgs, if that is the aim

http://arxiv.org/abs/arXiv:1012.3742
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Attractive IR trajectory
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Self Organized Higgs Criticality

Cem Eroncel,1 Jay Hubisz,1 and Gabriele Rigo1
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The critical point for a Higgs model can be associated with a minimum in the potential for a
modulus field so that classical dynamics of the modulus set the Higgs mass to zero. Quantum
fluctuations of the modulus give rise to a non-vanishing but suppressed vacuum expectation value
for the Higgs, breaking symmetries spontaneously. An explicit 5D model for this type of Higgs
sector is constructed. In this example, the modulus spectrum is gapped, with fluctuations obeying a
relativistic dispersion relation di↵erent from that of a massive particle. There are no light particles
besides the Higgs and goldstone bosons.

PACS numbers:

INTRODUCTION

The Higgs instability of the Standard Model (SM) ap-
pears thus far to be of the simplest variety, with the
SM existing un-naturally close to a critical point unpro-
tected by symmetry, with this critical point residing in
the universality class of approximate mean-field theory.
The Higgs mass operator of the standard model develops
a vacuum expectation value (vev) due to a relevant op-
erator (the Higgs mass term) having the “wrong sign” in
the infrared which destabilizes the origin in field space.
The hierarchy problem is the statement that in units of
larger fundamental scales in the problem, i.e. the Planck
or GUT scales the bare mass must be tuned to an absurd
degree to accommodate the observed value for the vev
and the mass of the Higgs particle. As a consequence it
is expected that low energy e↵ective theories with Higgs
sectors like that of the SM are extraordinarily rare when
there are other large physical scales present.

Most proposed resolutions of this problem invoke new
symmetries requiring new particles with fixed interac-
tions that ameliorate the quantum sensitivity of the
Higgs mass to larger mass scales. The paucity of new
particles at the TeV scale has sown doubt that this is the
way nature has created a low electroweak scale.

In this work, we investigate the possibility that the
critical point for Higgs sectors like that of the SM can
arise naturally due a self-organization principle, where a
zero for the Higgs mass term coincides with a global or
metastable local minimum in the potential for a modu-
lus field, making Higgs criticality a dynamical attractor
for the theory. In order to remain robust under quan-
tum corrections or variation of the input parameters a
kink discontinuity at this minimum has clear advantages.
Other influences such as quantum e↵ects or higher di-
mensional operators will otherwise tend to dissociate a
smooth minimum from the true Higgs critical point. This
kink singularity would correspond to a first order Higgs
phase transition (in the original Ehrenfest classification)
as a function of the modulus vev, should its dynamics be
frozen. A cartoon is shown in Figure ??. To be properly
identified as self-organization, in the most conservative

ϕ

V(
ϕ)

m2

H = 0

m2

H > 0 m2

H < 0

FIG. 1: This figure exhibits a cartoon of a potential for a
modulus field, �, where the singular minimum matches on to
a critical point at which the mass of a physical light Higgs
field fluctuation passes through zero. On either side of the
singular point, the Higgs boson mass is finite and positive,
but on one side the mass2 for the field is negative, with the
instability driving spontaneous symmetry breaking.

application of this label, criticality at the minimum of
the potential must be robust under reasonable variation
of model input parameters.

While the mass of the Higgs is strictly zero at the clas-
sical minimum, quantum fluctuations of the modulus can
generate non-trivial overlap of the vacuum wave func-
tional with the region where the Higgs mass is past crit-
icality, leading to spontaneous breakdown of symmetries
of the Higgs theory.

To realize such a scenario, there first must be a feed-
back mechanism, such that when the Higgs field develops
a vev, the potential for the modulus responds, as shown
in Figure ?? . If this feedback is itself the origin of the
kink singularity, with the singular point corresponding
to the critical value at which the Higgs vev turns on, a
classical modulus field will move until it rests at the sin-
gularity, where the mass of the Higgs fluctuation is van-
ishing. Of course the feedback must also be of a rather
special variety, where the turn-on of the Higgs vev raises
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SOC = Self Tuned Phase Transition
We seek some solution to the hierarchy problem similar 

to that of axion solution to strong CP - axion “self-tunes” 
effective theta angle to zero at min of instanton potential

Modulus field with potential energy minimum  
at point where mH2=0 (condensate in ~CFT)

-



Randall-Sundrum
Original setup unstable

S =

Z
d

4
xdz

p
g


6k2



2
� 1

22
R

�

�
Z

d

4
x

p
gind(z0)T0 �

Z
d

4
x

p
gind(z1)T1

ds

2 =

✓
1

kz

◆2 �
dx

2
4 � dz

2
�

Can integrate over z putting in classical solution - 
effective potential for brane locations:

Solution to Einstein equations - constant neg. curvature:

AdS metric:

Ve↵ =
1

z40


T0 �

6k

2

�
+

1

z41


T1 +

6k

2

�
Branes move  

unless T0 =-T1=6k/𝜿2  
Tuning

Higgs lives near z1 
warping makes higgs light 

but close to KK scale 
w/o tuning

Wrong metric ansatz - e.g. time dependence in ds2



Holographic Model

• Higgs is in the bulk of the extra dimension 

• Radion/modulus is fluctuations in distance between UV and IR branes 

• IR brane = condensates / confinement scale (SB-CFT) 

• Slowly changing 5D Higgs mass (the slow driving force of SOC)

Geometric warping  
creates large hierarchies

A great toolkit for solving many 
problems of SM  

(fermion masses, flavor, etc)

zUV z1

AdS/CFT:   Coordinate ⟺ scale:   z ⟺1/𝜇



Stabilization
• Many interesting ways to do this - new fields in 5D: 

• Casimir energies - quantum balances classical 

• Scalar vev’s:  Goldberger-Wise and related 

• dimensional transmutation 

• additional terms in classical E.E.’s 

• backreaction on geometry feeds into potential 

• can balance pure tensions, alleviate one fine tuning
Of course Higgs is a scalar, and gets a vev 

 Can Higgs stabilize it?
Answer is yes, although setups slightly different than GW



A Simple 5D Model
5D theory with gravity and a scalar field

Scalar field is a Higgs, mass depends on z

There is an IR brane at z1, KK scale 1/z1, but no UV brane
(For simplicity - realistic model needs UV brane)

z1 is the modulus vev - fluctuations are the radion

5D CC: k=1 5D GN

IR brane potential
Fluctuations:

2

riety, where the turn-on of the Higgs vev raises rather
than lowers the potential energy of the system (in con-
trast with the SM or similar condensed matter systems
where formation of the condensate lowers the free energy
as the system is moved past criticality).

In a specific 5-dimensional construction we show ex-
plicitly how such a kink singularity in the potential for
the modulus (a.k.a. the radion) may arise at the point of
Higgs criticality, with condensation of the Higgs gener-
ating a jump and change in sign in the derivative of the
radion potential.

A 5D MODEL OF SELF ORGANIZATION

To illustrate a basic model with the features we seek,
we work in a 5D asymptotic anti-de Sitter space without
a UV brane and in which the limit of weak 5D gravity is
(eventually) imposed. Before imposing the weak gravity
limit, the metric can be written as (setting the curvature
near the AdS boundary, k, to 1):

ds2 =
1

z2


dx2

4

� dz2

G(z)

�
(1)

The coordinate z ranges from 0 at the AdS boundary
to an IR brane at z = z

1

, and for z ! 0, G(z) ! 1 and
G0(z) ! 0. Away from z = 0, the function G encodes the
e↵ects of gravitational back-reaction due to non-trivial
bulk physics. We are restricting to solutions obeying 4D
Lorentz invariance.

The action is given by
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with 2 = 1/(2M3

Planck

), and the weak gravity limit cor-
responding to 2 ! 0. The bulk mass function is cho-
sen to have fixed value in the limit z ! 0, and decreases
monotonically as a function of z: m2(z) = �4+�m2��z✏.
Note that m2 = �4 corresponds to the Breitenlohner-
Freedman bound, and �m2 is taken to be a positive quan-
tity so that the z ! 0 limit is well-defined.[13] For the IR
brane potential, we take V
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a vacuum expectation value, hHi = �(z)/
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Restricting to solutions that obey 4D Lorentz invari-
ance, the Einstein equations relate the metric function G
to the behavior of the Higgs vev in the bulk:
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The zero-momentum scalar field equation of motion in
the limit of small 2 is
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with energetic favorability of a non-trivial solution de-
pending on the boundary conditions associated with the
action.

Near the AdS boundary z ! 0, the solutions are power

law in z, with the expected behavior � / z2±
p

�m2
, where

the two di↵erent scaling laws correspond to two di↵erent
boundary conditions or definitions of the action. The
scaling law z�+ is more generic, with fine tuning of BC’s
(or supersymmetry) required to obtain the scaling with
power-law ��. The full solution is
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coe�cient of an operator O†
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solution.

Choice of the UV boundary condition does not much
a↵ect the discussion, and we choose to display the e↵ects
of the first of these two solutions, taking m2
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The condition for formation of a condensate is met

when the IR brane boundary condition favors a non-
trivial value for the coe�cients of the bulk solution:
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Effective Higgs Mass

• There is a 4D low energy EFT with a single Higgs around or 
below the KK scale 

• Effective Higgs mass2 involves both terms in V1  
(IR brane potential) and an integral over z taking into 
account changing bulk mass 

• Criterion for vev (symmetry breaking) depends on z1

2
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The condition for formation of a condensate is met
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𝜀 small, but not tiny (0.1 or so) ⟹ log “running”
-4 is the Breitenlohner-Freedman bound  
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Figure 4: Here we show the lowest eigenvalue associated with the Higgs fluctuations, the solutions
to Eq. (2.19) with the boundary conditions associated with the IR brane-localized Higgs potential.
The region where the Higgs VEV resolves a single tachyon is shaded, and the physical Higgs
fluctuation here is in fact massive. This is the first critical region, where there is only one tachyon
to be resolved. An unresolved tachyon emerges for larger z1, when the Higgs VEV turns o↵,
indicating a fundamental instability.
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2

than lowers the potential energy of the system (in con-
trast with the SM or similar condensed matter systems
where formation of the condensate lowers the free energy
as the system is moved past criticality).

In a specific 5-dimensional construction we show ex-
plicitly how such a kink singularity in the potential for
the modulus (a.k.a. the radion) may arise at the point of
Higgs criticality, with condensation of the Higgs gener-
ating a jump and change in sign in the derivative of the
radion potential.

A 5D MODEL OF SELF ORGANIZATION

To illustrate a basic model with the features we seek,
we work in a 5D asymptotic anti-de Sitter space without
a UV brane and in which the limit of weak 5D gravity is
(eventually) imposed. Before imposing the weak gravity
limit, the metric can be written as (setting the curvature
near the AdS boundary, k, to 1):
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), and the weak gravity limit cor-
responding to 2 ! 0. The bulk mass function is cho-
sen to have fixed value in the limit z ! 0, and decreases
monotonically as a function of z: m2(z) = �4+�m2��z✏.
Note that m2 = �4 corresponds to the Breitenlohner-
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Choice of the boundary condition does not a↵ect the dis-
cussion, and we choose to display the e↵ects of the first
of these two solutions.

The condition for formation of a condensate is met
when the IR brane boundary condition favors a non-
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than lowers the potential energy of the system (in con-
trast with the SM or similar condensed matter systems
where formation of the condensate lowers the free energy
as the system is moved past criticality).

In a specific 5-dimensional construction we show ex-
plicitly how such a kink singularity in the potential for
the modulus (a.k.a. the radion) may arise at the point of
Higgs criticality, with condensation of the Higgs gener-
ating a jump and change in sign in the derivative of the
radion potential.
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To illustrate a basic model with the features we seek,
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a UV brane and in which the limit of weak 5D gravity is
(eventually) imposed. Before imposing the weak gravity
limit, the metric can be written as (setting the curvature
near the AdS boundary, k, to 1):

ds2 =
1

z2


dx2

4

� dz2

G(z)

�
(1)

The coordinate z ranges from 0 at the AdS boundary
to an IR brane at z = z

1

, and for z ! 0, G(z) ! 1 and
G0(z) ! 0. Away from z = 0, the function G encodes the
e↵ects of gravitational back-reaction due to non-trivial
bulk physics. We are restricting to solutions obeying 4D
Lorentz invariance.

The action is given by

S =
1

2

Z
d4xdz

p
g


(@M�)2 +

12

2

� m2(z)�2 � 1

2

R

�

� 1

2

Z
d4xz�4m2

0

�2|z!0

�
Z

d4x
p

g
ind

V
1

(�)|z!z1 ,

(2)

with 2 = 1/(2M3

Planck

), and the weak gravity limit cor-
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sen to have fixed value in the limit z ! 0, and decreases
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Note that m2 = �4 corresponds to the Breitenlohner-
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Near the AdS boundary z ! 0, the solutions are power

law in z, with the expected behavior � / z2±
p

�m2
, where

the two di↵erent scaling laws correspond to two di↵erent
boundary conditions or definitions of the action. The
scaling law z�+ is more generic, with fine tuning of BC’s
(or supersymmetry) required to obtain the scaling with
power-law ��. For m2

0

6= 2 �
p

�m2, the full solution is

� = �
+

z2J
2
p

�m2

✏

 
2
p

�

✏
z✏/2

!
(7)

while for the special case m2

0

= 2�
p

�m2, the solution is

� = ��z2J
� 2

p
�m2

✏

 
2
p

�

✏
z✏/2

!
(8)

Choice of the boundary condition does not a↵ect the dis-
cussion, and we choose to display the e↵ects of the first
of these two solutions.

The condition for formation of a condensate is met
when the IR brane boundary condition favors a non-
trivial value for the coe�cients of the bulk solution:
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than lowers the potential energy of the system (in con-
trast with the SM or similar condensed matter systems
where formation of the condensate lowers the free energy
as the system is moved past criticality).

In a specific 5-dimensional construction we show ex-
plicitly how such a kink singularity in the potential for
the modulus (a.k.a. the radion) may arise at the point of
Higgs criticality, with condensation of the Higgs gener-
ating a jump and change in sign in the derivative of the
radion potential.

A 5D MODEL OF SELF ORGANIZATION

To illustrate a basic model with the features we seek,
we work in a 5D asymptotic anti-de Sitter space without
a UV brane and in which the limit of weak 5D gravity is
(eventually) imposed. Before imposing the weak gravity
limit, the metric can be written as (setting the curvature
near the AdS boundary, k, to 1):
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than lowers the potential energy of the system (in con-
trast with the SM or similar condensed matter systems
where formation of the condensate lowers the free energy
as the system is moved past criticality).

In a specific 5-dimensional construction we show ex-
plicitly how such a kink singularity in the potential for
the modulus (a.k.a. the radion) may arise at the point of
Higgs criticality, with condensation of the Higgs gener-
ating a jump and change in sign in the derivative of the
radion potential.
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To illustrate a basic model with the features we seek,
we work in a 5D asymptotic anti-de Sitter space without
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responding to 2 ! 0. The bulk mass function is cho-
sen to have fixed value in the limit z ! 0, and decreases
monotonically as a function of z: m2(z) = �4+�m2��z✏.
Note that m2 = �4 corresponds to the Breitenlohner-
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cussion, and we choose to display the e↵ects of the first
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than lowers the potential energy of the system (in con-
trast with the SM or similar condensed matter systems
where formation of the condensate lowers the free energy
as the system is moved past criticality).

In a specific 5-dimensional construction we show ex-
plicitly how such a kink singularity in the potential for
the modulus (a.k.a. the radion) may arise at the point of
Higgs criticality, with condensation of the Higgs gener-
ating a jump and change in sign in the derivative of the
radion potential.
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To illustrate a basic model with the features we seek,
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bulk physics. We are restricting to solutions obeying 4D
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), and the weak gravity limit cor-
responding to 2 ! 0. The bulk mass function is cho-
sen to have fixed value in the limit z ! 0, and decreases
monotonically as a function of z: m2(z) = �4+�m2��z✏.
Note that m2 = �4 corresponds to the Breitenlohner-
Freedman bound, and �m2 is taken to be a positive quan-
tity so that the z ! 0 limit is well-defined.[? ] For the
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with energetic favorability of a non-trivial solution de-
pending on the boundary conditions associated with the
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Choice of the boundary condition does not a↵ect the dis-
cussion, and we choose to display the e↵ects of the first
of these two solutions.

The condition for formation of a condensate is met
when the IR brane boundary condition favors a non-
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Scalar Equation of motion (can solve for vev analytically):
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Asymptotics
In the UV (small z) region, solution is scaling

� / z� with � = 2±
p
�m2

Choice of delta depends on z=0 boundary action

In the IR (large z), solution develops  
log-periodic behavior:
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The Boundary Condition:
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For small z1, 𝝓 is just zero, but vev develops if z1 is larger:
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with 2 = 1/(2M3
Planck). The bulk mass function is chosen to a have fixed value in the limit

z ! 0, and decreases monotonically and slowly as z increases:2

m2(z) = �4 + �m2 � �z✏. (2.3)

Note that m2 = �4 corresponds to the Breitenlohner-Freedman bound, and �m2 is taken
to be a positive quantity so that the z ! 0 limit is well-defined.3 We note that past work
explored constant Higgs bulk mass near the BF bound [23,24] with interesting implications
for radion stabilization. For the IR brane potential, we take

V1(|H|) = T1 + �H |H|2�|H|2 � v2H
�
, (2.4)

where T1 is the tension of the brane. The Higgs may, for some regions of parameter space,
pick a nonvanishing vacuum expectation value, hHi = �(z)/

p
2, where the Higgs VEV has

a nontrivial profile along the z-coordinate.

Restricting to solutions that obey 4D Lorentz invariance, the Einstein equations relate
the metric function G to the behavior of the Higgs VEV in the bulk:
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and they can be further employed to reduce the e↵ective potential for the classical zero-
momentum configuration to a pure IR boundary term [25]:
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There is generally a UV contribution from the brane at z0 as well, but it vanishes as z
2
p
�m2

0

in the z0 ! 0 limit, with the exception of a constant term which is tuned to give vanishing

2It is not di�cult to arrange for this type of z-dependent mass term to arise dynamically, rather than
through this forced explicit breaking of the isometries of AdS. We give examples in Section 3.

3If the mass is taken below the BF bound as z ! 0, perturbations solving the scalar equation of motion
oscillate rapidly in the UV, indicating the need for an ultraviolet cuto↵, such as a brane that cuts o↵ the
small z region of the spacetime [8].
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Radion Potential Near Criticality 
z1 ≈ z0

Barely past criticality, Higgs vev is linear in z
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At the point of criticality, for small p2, the Green’s func-
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where  
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(z) solves the 5D equation of motion for p2 = 0,
and thus takes the same functional form as the vev, �(z).
The mn are the usual KK-mode masses.

As the Higgs vev turns on, the character of the radion
potential also changes dramatically. Of primary interest
is the behavior of the radion potential near the region of
z
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where the Higgs vev is just turning on. A linearized
approximation of the Higgs contribution to the potential
gives the leading contribution in the immediate neighbor-
hood of criticality. The function for �(z
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The radion potential in the regime just after the vev turns
on is given by
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where �T
1

is the mistune between the IR brane tension
and the bulk cosmological constant. The contribution
of the Higgs condensate to the radion potential is pos-
itive definite, satisfying the requirement laid out in the
introduction. In order for the derivative of the radion
potential to change sign, creating a kink minimum, an
additional condition for the radion quartic (the IR brane
mis-tune) must hold:
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These requirements are satisfied relatively robustly un-
der variation of the input parameters. In Figure 2, we
show an example of the radion potential with a kink-like
minimum.

QUANTIZING THE BRANE:
SPONTANEOUS SYMMETRY BREAKING

To understand the vacuum structure of the theory, mo-
tion of the brane must be quantized, assuming some dy-
namics for it. Intuitively, we expect that quantum fluc-
tuations will “flicker” the radion across the Higgs phase

FIG. 2:

transition, generating a non-vanishing vacuum expecta-
tion value. The IR brane is thus promoted to a field, er,
in the vicinity of the minimum at z
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: z
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(1 + z
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We take a simple relativistic brane lagrangian given by
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N is a normalization coe�cient determined by a detailed
description of the dynamics of the brane. In restoring
dynamical gravity N could be calculated from the grav-
itational action, and the radion would correspond to 5D
metric fluctuations.

The full ground state is di�cult to construct, how-
ever, for an unbent moving brane configuration satisfying
~rr = 0, we can solve the functional Schrödinger equa-
tion. In the Schrödinger picture, the ground state of the
Hamiltonian obeys the following functional di↵erential
equation:
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where we have separated out the ground state for un-
bent brane configurations. The Schrödinger operator for
constant field profile is
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The factor of z�6

0

arises as a UV regulator for the fluctu-
ations of the brane relative to z

0

.
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0 for z1 < z0
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dynamical gravity N could be calculated from the grav-
itational action, and the radion would correspond to 5D
metric fluctuations.

The full ground state is di�cult to construct, how-
ever, for an unbent moving brane configuration satisfying
~rr = 0, we can solve the functional Schrödinger equa-
tion. In the Schrödinger picture, the ground state of the
Hamiltonian obeys the following functional di↵erential
equation:
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Due to conservation of momentum, the ground state can
be written as a product over the ground states for each
momentum mode:
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where we have separated out the ground state for un-
bent brane configurations. The Schrödinger operator for
constant field profile is
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The factor of z�6

0

arises as a UV regulator for the fluctu-
ations of the brane relative to z

0

.



Radion Potential Near Criticality
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At the point of criticality, for small p2, the Green’s func-
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where  
0

(z) solves the 5D equation of motion for p2 = 0,
and thus takes the same functional form as the vev, �(z).
The mn are the usual KK-mode masses.

As the Higgs vev turns on, the character of the radion
potential also changes dramatically. Of primary interest
is the behavior of the radion potential near the region of
z
1

where the Higgs vev is just turning on. A linearized
approximation of the Higgs contribution to the potential
gives the leading contribution in the immediate neighbor-
hood of criticality. The function for �(z
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The radion potential in the regime just after the vev turns
on is given by
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where �T
1

is the mistune between the IR brane tension
and the bulk cosmological constant. The contribution
of the Higgs condensate to the radion potential is pos-
itive definite, satisfying the requirement laid out in the
introduction. In order for the derivative of the radion
potential to change sign, creating a kink minimum, an
additional condition for the radion quartic (the IR brane
mis-tune) must hold:

0 < �T <
1
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�⇤
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. (16)

These requirements are satisfied relatively robustly un-
der variation of the input parameters. In Figure 2, we
show an example of the radion potential with a kink-like
minimum.

QUANTIZING THE BRANE:
SPONTANEOUS SYMMETRY BREAKING

To understand the vacuum structure of the theory, mo-
tion of the brane must be quantized, assuming some dy-
namics for it. Intuitively, we expect that quantum fluc-
tuations will “flicker” the radion across the Higgs phase
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transition, generating a non-vanishing vacuum expecta-
tion value. The IR brane is thus promoted to a field, er,
in the vicinity of the minimum at z
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N is a normalization coe�cient determined by a detailed
description of the dynamics of the brane. In restoring
dynamical gravity N could be calculated from the grav-
itational action, and the radion would correspond to 5D
metric fluctuations.

The full ground state is di�cult to construct, how-
ever, for an unbent moving brane configuration satisfying
~rr = 0, we can solve the functional Schrödinger equa-
tion. In the Schrödinger picture, the ground state of the
Hamiltonian obeys the following functional di↵erential
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be written as a product over the ground states for each
momentum mode:

 
0

=  
~k=

~
0

0

Y

~k 6=~
0

 
~k
0

(19)

where we have separated out the ground state for un-
bent brane configurations. The Schrödinger operator for
constant field profile is
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The factor of z�6

0

arises as a UV regulator for the fluctu-
ations of the brane relative to z

0

.

Radion potential has kink singularity at z1=z0

The kink is generic to this construction  
Without extra dynamics, metastable
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Figure 2: Here we display the radion potential, Vrad(z1). In the white region, the Higgs VEV
is vanishing, and the radion potential is a pure quartic. In the gray region, �(z1) 6= 0, and the
contribution of the Higgs to the radion potential causes a kink-like minimum to appear at the
critical points. In the first plot, we have zoomed in on the first minimum, corresponding to the
smallest z1 for which the criticality conditions are met. In the second plot, we zoom out, showing
other potential minima. These are unhealthy, in that the theory at this point contains unresolved
tachyons. The dashed vertical line in the second plot corresponds to the value of z at which the
evolving bulk Higgs mass passes the BF bound.

The contribution of the Higgs condensate to the radion potential is also positive definite,
satisfying the requirement laid out in the introduction. In order for the derivative of the
radion potential to change sign, creating a kink minimum, an additional condition for the
radion quartic (the IR brane mistune) must hold:

0 < �T1 <
1

128�H

⇥
4m2

�
z1c
�� �Hv

2
H

�
�Hv

2
H � 8

�⇤2
. (2.18)

These requirements are satisfied relatively robustly under variation of the input parameters.
In Figure 2, we show an example of the radion potential with a kink-like minimum, where
we have taken �T1 = 1, �m2 = 1, � = ✏ = 0.1, v2H = 0, and �H = 1/8.

There are two plots in the Figure: in the first, on the left, we show a close-up that
focuses on the critical value of the radion VEV. On the right, we zoom out. Unsurprisingly,
it appears that there are multiple such minima, and that the first one is metastable. This
is due to the quasi-periodicity of the Higgs VEV solution at large values of z. Closer exam-
ination of the theory in these regions shows that there are unresolved tachyon instabilities
associated with Higgs fluctuations. In these regions, no VEVs are formed, but there are
solutions to the scalar equation of motion with negative mass squared, as we show in the
next subsection.

Before studying the instabilities, it is worthwhile to explore the behavior of the e↵ective
potential under variations of the fundamental parameters. Crucial to the success of the
model as one of self-organized Higgs criticality is the existence of a broad critical region,
over which the Higgs remains massless. In Figure 3, we examine the behavior of the radion
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<O4> vs <OH> 
In ~CFT, operators that pick vevs can be Higgs operator, 

or other marginal/near marginal operators

Determined by boundary conditions in IR 
not clear what dual picture is
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Figure 3: Here we show, on the left, the dependence of the potential on the IR brane parameter v2H
in the vicinity of the first critical point. The curves correspond to v2H = �1 (solid), v2H = v2H(crit)
(dashed), v2H = 1 (dotted), and v2H = 2 (dot-dashed). The dots indicate the minimum of the
potential. The minimum moves into the region where the Higgs VEV is nonzero after some
critical point v2H(crit). On the right, we show the e↵ective Higgs VEV in units of the scale
f = z�1

min, where zmin is the location of the minimum of the radion potential. The VEV (and
Higgs mass/inverse of the correlation length) is vanishing below v2H(crit), and grows quickly after
the critical point is exceeded.

potential under variations of the IR brane Higgs mass squared, encoded in v2H . We see
that with changing v2H , the location of the minimum is relatively constant, however there
is a critical point after which the location of the minimum moves away from the kink in
the potential. The region of parameter space where the minimum resides at the kink is a
critical region, as there is a zero mode Higgs for all values of v2H < v2H(crit).

2.1 Instabilities: The Resolvable and the Catastrophic

Here we briefly examine the stability of fluctuations for di↵erent values of the modulus field
VEV. Summarizing the results first: the minimum for smallest zc and neighboring values
of the radion VEV is always a “healthy” minimum where there are no unresolved tachyonic
states. However, past the first region where the Higgs VEV resolves the tachyon, there
are instabilities without condensates to rectify them, or the condensates are insu�cient to
prevent all of them. In this case, the 5D description is not a good one, and the theory
must resolve the tachyon with some far more dramatic transition. We label such behavior
“catastrophic”, and we comment briefly on this further in Section 5.

We can inspect the tachyon instabilities through examination of the spectrum of Higgs
fluctuations. The equation of motion for these, presuming a vanishing Higgs VEV, is given
by

h00(z)� 3

z
h0(z)� 1

z2
��4 + �m2 � �z✏

�
h(z) = �m2h(z), (2.19)

9

vH2 controls 4D brane Higgs Tachyon 
massless Higgs region when AdS tachyon dominates
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A Minimum at the kink
We need to have the derivative change sign at z0

Quartic mis-tune can’t be huge, but fine for reasonable 
range of mistune (in units of curvature) 
 Higgs brane mass plays important role

So we have a model which supplies us with all criterion 
sufficient to create a potential with minimum where Higgs 

mass2 is exactly zero

Required external explicit breaking of AdS isometries 
 = external explicit violation of scale invariance

Figure 2: Here we display the radion potential, Vrad(z1). In the white region, the Higgs VEV
is vanishing, and the radion potential is a pure quartic. In the gray region, �(z1) 6= 0, and the
contribution of the Higgs to the radion potential causes a kink-like minimum to appear at the
critical points. In the first plot, we have zoomed in on the first minimum, corresponding to the
smallest z1 for which the criticality conditions are met. In the second plot, we zoom out, showing
other potential minima. These are unhealthy, in that the theory at this point contains unresolved
tachyons. The dashed vertical line in the second plot corresponds to the value of z at which the
evolving bulk Higgs mass passes the BF bound.

The contribution of the Higgs condensate to the radion potential is also positive definite,
satisfying the requirement laid out in the introduction. In order for the derivative of the
radion potential to change sign, creating a kink minimum, an additional condition for the
radion quartic (the IR brane mistune) must hold:
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These requirements are satisfied relatively robustly under variation of the input parameters.
In Figure 2, we show an example of the radion potential with a kink-like minimum, where
we have taken �T1 = 1, �m2 = 1, � = ✏ = 0.1, v2H = 0, and �H = 1/8.

There are two plots in the Figure: in the first, on the left, we show a close-up that
focuses on the critical value of the radion VEV. On the right, we zoom out. Unsurprisingly,
it appears that there are multiple such minima, and that the first one is metastable. This
is due to the quasi-periodicity of the Higgs VEV solution at large values of z. Closer exam-
ination of the theory in these regions shows that there are unresolved tachyon instabilities
associated with Higgs fluctuations. In these regions, no VEVs are formed, but there are
solutions to the scalar equation of motion with negative mass squared, as we show in the
next subsection.

Before studying the instabilities, it is worthwhile to explore the behavior of the e↵ective
potential under variations of the fundamental parameters. Crucial to the success of the
model as one of self-organized Higgs criticality is the existence of a broad critical region,
over which the Higgs remains massless. In Figure 3, we examine the behavior of the radion
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Quantum Corrections 
and Fine Tuning

• You have play in the dials, with a reasonably large region 
of parameter space where Higgs mass is exactly zero 

• Divergent quantum corrections absorbed into local 5d 
parameters 

• effect a change in where the kink is, but not its 
presence, and masslessness of Higgs fluctuation there 

• Non-local quantum corrections - don’t undo kink, small 
contribution to brane potential 



Metric Ansatz
Gibbons-Hawking-York Condition:

6
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G+ V1(�)
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This is a consistency condition on our metric ansatz -  
flat 4D slices:

3

At the point of criticality, for small p2, the Green’s func-
tion, in terms of an eigenfunction decomposition takes
the form
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where  
0

(z) solves the 5D equation of motion for p2 = 0,
and thus takes the same functional form as the vev, �(z).
The mn are the usual KK-mode masses.

As the Higgs vev turns on, the character of the radion
potential also changes dramatically. Of primary interest
is the behavior of the radion potential near the region of
z
1

where the Higgs vev is just turning on. A linearized
approximation of the Higgs contribution to the potential
gives the leading contribution in the immediate neighbor-
hood of criticality. The function for �(z
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where �T
1

is the mistune between the IR brane tension
and the bulk cosmological constant. The contribution
of the Higgs condensate to the radion potential is pos-
itive definite, satisfying the requirement laid out in the
introduction. In order for the derivative of the radion
potential to change sign, creating a kink minimum, an
additional condition for the radion quartic (the IR brane
mis-tune) must hold:
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These requirements are satisfied relatively robustly un-
der variation of the input parameters. In Figure 2, we
show an example of the radion potential with a kink-like
minimum.

QUANTIZING THE BRANE:
SPONTANEOUS SYMMETRY BREAKING

To understand the vacuum structure of the theory, mo-
tion of the brane must be quantized, assuming some dy-
namics for it. Intuitively, we expect that quantum fluc-
tuations will “flicker” the radion across the Higgs phase
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transition, generating a non-vanishing vacuum expecta-
tion value. The IR brane is thus promoted to a field, er,
in the vicinity of the minimum at z
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er).
We take a simple relativistic brane lagrangian given by

L
brane

=
N
2

(@µer)2 � V (er). (17)

For the canonically normalized field, r = er/N , we have
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N is a normalization coe�cient determined by a detailed
description of the dynamics of the brane. In restoring
dynamical gravity N could be calculated from the grav-
itational action, and the radion would correspond to 5D
metric fluctuations.

The full ground state is di�cult to construct, how-
ever, for an unbent moving brane configuration satisfying
~rr = 0, we can solve the functional Schrödinger equa-
tion. In the Schrödinger picture, the ground state of the
Hamiltonian obeys the following functional di↵erential
equation:
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Due to conservation of momentum, the ground state can
be written as a product over the ground states for each
momentum mode:
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where we have separated out the ground state for un-
bent brane configurations. The Schrödinger operator for
constant field profile is
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The factor of z�6

0

arises as a UV regulator for the fluctu-
ations of the brane relative to z

0

.

With this radion potential, this condition is never satisfied

2

than lowers the potential energy of the system (in con-
trast with the SM or similar condensed matter systems
where formation of the condensate lowers the free energy
as the system is moved past criticality).

In a specific 5-dimensional construction we show ex-
plicitly how such a kink singularity in the potential for
the modulus (a.k.a. the radion) may arise at the point of
Higgs criticality, with condensation of the Higgs gener-
ating a jump and change in sign in the derivative of the
radion potential.

A 5D MODEL OF SELF ORGANIZATION

To illustrate a basic model with the features we seek,
we work in a 5D asymptotic anti-de Sitter space without
a UV brane and in which the limit of weak 5D gravity is
(eventually) imposed. Before imposing the weak gravity
limit, the metric can be written as (setting the curvature
near the AdS boundary, k, to 1):

ds2 =
1

z2


dx2

4

� dz2

G(z)

�
(1)

The coordinate z ranges from 0 at the AdS boundary
to an IR brane at z = z

1

, and for z ! 0, G(z) ! 1 and
G0(z) ! 0. Away from z = 0, the function G encodes the
e↵ects of gravitational back-reaction due to non-trivial
bulk physics. We are restricting to solutions obeying 4D
Lorentz invariance.

The action is given by
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V
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(2)

with 2 = 1/(2M3

Planck

), and the weak gravity limit cor-
responding to 2 ! 0. The bulk mass function is cho-
sen to have fixed value in the limit z ! 0, and decreases
monotonically as a function of z: m2(z) = �4+�m2��z✏.
Note that m2 = �4 corresponds to the Breitenlohner-
Freedman bound, and �m2 is taken to be a positive quan-
tity so that the z ! 0 limit is well-defined.[13] For the IR
brane potential, we take V

1

(�) = T
1

+ �H

4

�2(�2 � 2v2),
where T

1

is the tension of the brane. Here we are taking
� to be a real scalar field, and the 5D theory has a Z

2

symmetry � ! ��.
Restricting to solutions that obey 4D Lorentz invari-

ance, the Einstein equations relate the metric function G
to the behavior of the scalar field in the bulk:

G =
�2

6

V (�)

1 � 2

12

(z�0)2
, (3)

and they can be further employed to reduce the e↵ective
potential for the classical zero-momentum configuration

to a pure IR boundary term:
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In the weak 5D gravity limit, this e↵ective potential re-
duces to
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The zero-momentum scalar field equation of motion in
the limit of small 2 is

�00 � 3

z
�0 � 1

z2

@V

@�
= 0, (6)

with energetic favorability of a non-trivial solution de-
pending on the boundary conditions associated with the
action.

Near the AdS boundary z ! 0, the solutions are power

law in z, with the expected behavior � / z2±
p

�m2
, where

the two di↵erent scaling laws correspond to two di↵erent
boundary conditions or definitions of the action. The
scaling law z�+ is more generic, with fine tuning of BC’s
(or supersymmetry) required to obtain the scaling with
power-law ��. For m2
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�m2, the full solution is
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while for the special case m2
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Choice of the boundary condition does not a↵ect the dis-
cussion, and we choose to display the e↵ects of the first
of these two solutions.

The condition for formation of a condensate is met
when the IR brane boundary condition favors a non-
trivial value for the coe�cients of the bulk solution:

1

✏

�
�Hv2 � 4

�
>

xJ 0
⌫(x)

J⌫(x)
(9)

Where ⌫ = 2

p
�m2

✏ and x = 2

p
�z

✏/2
1

✏ . Equality is associ-
ated with the presence of the exact critical point. The
emergence of a massless degree of freedom at this critical
point can be seen in the small momentum behavior of
the bulk correlator for the Higgs fluctuations. Working
in the unbroken (large f) phase, the Green’s equation for
scalar fluctuations is

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z + p2 � 3

z
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�
G(z, z0; p2) = iz�(z � z0)(10)

The geometry must be moving (4D slices are not flat) 
Non-trivial cosmology is an output 

seems like “trapped” radion oscillations
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Figure 5: In this figure, we show the radion potential with and without the Higgs contribution as
a function of the brane separation log(z1/z0). For this choice of parameters, the Higgs VEV turns
on and stabilizes the brane separation before the GW field reaches its minimum. The parameters
for this plot are given by v0 = 0.1, v1 = 1, ✏ = 0.1, �T1 ⇡ �0.4, �M2

UV = 1.5, �M2
IR = 2.3,

vH = 1 and �H = 1/8.

determined numerically), we have

�h = h0f(z), (3.30)

where the UV boundary condition enforces the following constraint on f :

f 0(z0) =
M2

0

2z0
f(z0). (3.31)

The IR brane boundary condition is then

h2
0 =

1

f(z1)2


v2H � 2z1f 0(z1)

�Hf(z1)

�
if positive, zero otherwise. (3.32)

As with the case of the forced varying Higgs mass in Section 2, the contribution of the
Higgs VEV to the radion potential is singular in its derivative with respect to z1 as the
VEV turns on. It is not di�cult to arrange for the Higgs VEV to turn on at small enough
values of z1, before the radion potential from the �d field turns around. In Figure 5, we
show a typical radion potential where the contribution of the driving field is shown as a
solid line, while the GW + Higgs contribution is shown as a dotted line. In this case, the
Higgs is massless at the metastable minimum at log(z1/z0) ⇡ 18.3.

In Figure 6 we display the lowest value of log(z1/z0) for which the Higgs VEV turns on
for various di↵erent values of the 5D parameters. As expected, in cases where the e↵ective
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Adding Goldberger-Wise potential 
Stabilize the Kink

It is not difficult to get the first kink to be a global 
minimum - no metastability issues

If you go to the kink, bulk thinks it is displaced from GW 
potential minimum - will oscillate 

Spontaneous Lorentz breaking “striped phase”



Summary
• tried to mock up components of SOC in holographic model - Conformality lost 

turned dynamical - some similarities to ongoing work in BSM Lat. community 

• hard breaking of AdS isometries/scale invariance 

• drives theory out of a (quasi) conformal window 

• holographic model has large range of parameters where low energy Higgs theory 
exactly at critical point 

• Seems to require non-trivial cosmology, perhaps radion oscillations?

Open ???’s
• Have broken 5D diffs in the IR region of AdS - is there a sensible field theory 

interpretation? 

• What might be a dual picture?  E.g. sequence of fermion masses explicitly 
breaking SI, moving the FP’s of KSS together?  Something more exotic?   

• What precisely is the non-trivial 4D effective cosmology?


