Partial compositeness on the lattice: SU(4) gauge theory with fermions in multiple representations

Presented by Daniel Hackett April 5, 2018 Lattice for BSM Physics 2018

The TACoS Collaboration

University of Colorado, Boulder (Co) Venkitesh Ayyar

Daniel Hackett Tom DeGrand William Jay Ethan Neil * Tel Aviv University (TA) **Yigal Shamir** Ben Svetitsky San Francisco State University (S) Maarten Golterman * RIKEN-BNL Research Center

Overview

Ferretti's model & our lattice deformation Composite Higgs, partially composite top quark Only fermions and gauge bosons; no fundamental scalars; no SUSY Multiple fermion representations: "multirep theory" First ever lattice investigation of a multirep theory [w/o SUSY, in 4D] Results:

Zero-temperature spectrum Pseudoscalars, vectors, baryons Finite-temperature phase structure

Ferretti's Model [arXiv:1404.7137]

"Hypercolor" SU(4) gauge theory coupled to $N_4 = 3$ Dirac flavors of fundamental fermion (cf. QCD) q $N_6^W = 5$ Weyl flavors of sextet (two-index antisymmetric) fermion Q[Note: 6 is a real irrep of SU(4)]

 β function \rightarrow QCD-like

Chiral symmetry breaking pattern

 $SU(3)_L \times SU(3)_R \times U(1)_X \times SU(5) \times U(1)_A \rightarrow SU(3)_c \times U(1)_X \times SO(5)$

 $[U(1)_A \text{ a non-anomalous superposition of } U(1)_{A(4)} \text{ and } U(1)_{A(6)}]$

Custodial symmetry in unbroken chiral subgroups:

 $SU(3)_c \times SO(5) \times U(1)_X$

 $\supset G_{cus.} = \frac{\mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R \times \mathrm{U}(1)_X}{\supset G_{SM}} = \frac{\mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y}{\supset G_{SM}} = \frac{\mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y}{\supset G_{SM}}$

Gauge $SU(3)_c \rightarrow QCD$ in Standard Model

Gauge $SU(2)_L \times U(1)_Y \rightarrow$ Electroweak force in Standard Model

Ferretti model hadrons

Mesons

 $\overline{q}q$ fundamental pNGBs, vectors

 $QQ, \overline{Q}Q, \overline{Q}\overline{Q}$ sextet pNGBs, vectors

Ferretti limit $m_6 \rightarrow 0$: Higgs is massless sextet NGB

Higgs potential from SM interactions

Fermion masses from quadratic mixing $u\bar{u}H \rightarrow u\bar{u}QQ$

Non-anomalous $U(1)_A \rightarrow axial singlet pNGB (\zeta meson)$

Baryons

Fundamental qqqq [Boson] Sextet QQQQQQ [Boson] Chimera Qqq [Fermion] t partner: Mixes linearly with t via $tQqq = tO_{PC}$ Qqq mass ~ $\Lambda_{HC} > \Lambda_{SM} \Rightarrow$ Large mass for t

Ferretti's model on the lattice

Goal: Investigate (semi-quantitatively) strong dynamics

Simulated theory: "Lattice-deformed Ferretti model" or "the multirep theory" SU(4) gauge theory coupled to $N_4 = 2$ Dirac flavors of fundamental fermion

 $N_6 = 2$ Dirac flavors ($N_6^w = 4$ Weyl flavors) of sextet fermion

Easier flavor content for lattice, \sim same physics Same (types of) states as Ferretti model: ζ axial singlet pNGB, Qqq chimera baryon

Lattice action

Wilson gauge action

+ nHYP Dislocation Suppressing (NDS) term [DeGrand, Shamir, Svetitsky 2014]

Clover-improved Wilson fermions with nHYP smearing

3D bare parameter space: β , κ_4 , κ_6

Technical details

Simulate with Multirep MILC [Shamir]

Spectroscopy

Extract masses by fitting two-point functions Measure fermion masses with Axial Ward Identity (AWI)

$$\partial_{\mu} \left\langle A_{\mu}^{(r)}(x) P^{(r)}(0) \right\rangle = 2m_r \left\langle P^{(r)}(x) P^{(r)}(0) \right\rangle$$

Pseudoscalar, vector decay constants from

$$\begin{pmatrix} 0 \left| A_{\mu}^{(r)} \right| P^{(r)} \rangle \sim p_{\mu} F_{P} & [F_{\pi} = 130 \text{ MeV convention}] \\ \begin{pmatrix} 0 \left| V_{i}^{(r)} \right| V_{j}^{(r)} \rangle = \delta_{ij} M_{Vr} F_{Vr} \end{cases}$$

Scale setting

Wilson flow with definitions adjusted for $N_c = 4$ [DeGrand 2016] $\langle t_0^2 E(t_0) \rangle = 0.1 N_c = 0.4$

[Notation: any quantity without explicit as has been scaled by appropriate factors of t_0]

Zero-temperature data & analysis

$\mathcal{O}(40)$ ensembles

Volumes: $16^3 \times 18$, $16^3 \times 32$, $24^3 \times 48$ Masses: $0.5 \leq M_P/M_V \leq 0.8$

General approach:

Have ensembles at many m_4 , m_6 , aFit **all** data to model in m_4 , m_6 , aModel aware of a dependence

ightarrow Can take continuum limit a
ightarrow 0Model aware of m_r dependence

ightarrow Can take chiral limits $m_r
ightarrow 0$

Modeling the pseudoscalar sector with χ PT

Model

Multirep χ PT gives expressions for M_{P4} , M_{P6} , F_{P4} , F_{P6} as a function of m_4 , m_6 [arXiv:1605.07738]

Wilson fermions break chiral symmetry

Use Wilson χ PT to account for lattice artifacts

Analysis: Fit lattice measurements of M_{P4} , M_{P6} , F_{P4} , F_{P6} to measure

 B_4, B_6 [GMOR: $M_{Pr}^2 = 2B_r m_r + \cdots$] F_4, F_6, F_ζ [ζ sector has its own decay constant]...and NLO LECs[including LECs for a dependence]fit works: $\chi^2/dof = 0.48$ for (172 observations) = (21 fit params) = 120

Chiral fit works: $\chi^2/dof = 0.48$ for (172 observations) – (21 fit params) = 151 dof For more analysis details, see our paper [arXiv:1710.00806]

 ζ meson contributes chiral logs to M_{P4}^2 , M_{P6}^2

 \rightarrow Chiral fit indirectly measures ζ sector! [In practice, use LO M_{ζ} and measure F_{ζ}]

ζ meson mass

Reconstruct M_{ζ} as a function of m_4 , m_6 from chiral fit

Phenomenology:

 $\ln m_6 \rightarrow 0 \text{ limit, } M_{\zeta} < M_{P4}$

- ⇒ ζ meson lightest (massive) state in the spectrum [Sextet pNGB is exactly massless]
- Axial singlets decay to two SM gauge bosons [Ferretti et al. arXiv:1610.06591]
- \Rightarrow Experimental constraints?

Vector meson decay widths from KSRF

[KSRF: Kawarabayashi, Suzuki 1966; Riazuddin, Fayyazuddin 1966]

Baryon spectrum: quark model

Fermions acquire dynamical mass, so define "constituent masses"

$$m_4^{(c)} = C_4 + C_{44}m_4 \qquad m_6^{(c)} = C_6 + C_{66}m_6$$

Baryon masses: constituent masses + rotor splitting [J is total spin]
$$M_{q^4} = 4m_4^{(c)} + \cdots J(J+1) + \cdots a$$
$$M_{0^6} = 6m_6^{(c)} + \cdots J(J+1) + \cdots a$$

Chimera baryons Qqq get additional rotor corrections [I is spin of qq]

$$M_{Qqq} = 2m_4^{(c)} + m_6^{(c)} + C + \dots a + \dots J(J+1) + \dots I(I+1)$$

[Can justify more rigorously as $1/N_c$ expansion. See preprint: <u>arXiv:1801.05809</u>]

Quark model fit

Baryon masses for 12 ensembles Baryons noisy, difficult to fit

10 baryon masses per ensemble Sextet Q^6 with J = 0,1,2,3Fundamental q^4 with J = 0,1,2Chimera Qqq with $(J,I) = \left(\frac{1}{2},0\right), \left(\frac{1}{2},1\right), \left(\frac{3}{2},1\right)$

↑ Top partner

Simultaneous fit to all 120 baryon masses 120 measurements – 11 fit params = 109 dof Good fit: $\chi^2/dof = 0.85$

Baryon spectrum in Ferretti limit

Use model to take $a \rightarrow 0, m_6 \rightarrow 0$

Sextet masses constant by construction

Top partner:

~ degenerate with (1/2, 1) chimera Lightest states in baryon spectrum

Spectrum in Ferretti limit

Experimental constraints:

 $F_6 \gtrsim 1.1 \text{ TeV}$ $\Rightarrow M \gtrsim 6.5 \text{ TeV}$ for top partner

See our paper for details [arXiv:1801.05809]

Summary: set of models predicts

*M*s, *F*s for pseudoscalar and vector mesons Baryon masses

... in the continuum limit, as a function of m_4 , m_6

 \Rightarrow Measure one mass, predict entire spectrum!

Thermodynamics

Zero-temperature results: both fermion species are chirally broken Theory is asymptotically free

⇒ Both fermion species deconfined at high temperature

Questions:

How many phase transitions between T = 0 and $T = \infty$? Tumbling/condensation in to Most Attractive Channel [Raby, Susskind, Dimopolous 1980] Prediction: sextets condense before fundamentals, intermediate "partially confined" phase Order of phase transition(s)? Transition temperature(s)?

[arXiv:1802.09644]

Numerical details

 $\mathcal{O}(500)$ ensembles

Mostly $12^3 \times 6$ and $16^3 \times 8$ Mostly at $\beta = 7.4, 7.75$

Spectroscopy

Lattices with short temporal extent

→ Measure screening masses

Scale setting

 t_0 contaminated by finite-*a* effects in regions of interest Instead, use $t_1: \langle t_1^2 E(t_1) \rangle = \frac{2}{3} \frac{N_c}{3} = \frac{8}{9}$ [Sommer arXiv:1401.3270]

Lattice-units fermion masses near transition

No intermediate phase

Transition is first-order

All observables jump at the transition

Discontinuity is present everywhere

Transition is sharp

Observables are either "confined-like" or "deconfined-like," with no interpolation

Also observe metastability in equilibration

 \Rightarrow (Violently) first-order transition!

Phenomenology: first-order transitions in the early universe make gravitational waves [Schwaller <u>arXiv:1504.07263</u>] [LISA <u>arXiv:1610.06481</u>]

Phase transition at $\beta = 7.4$, $\kappa_4 = 0.1285$ 0.25 1.47 0.20 1.46 am₄ 0.15 am 1.45 <u>be</u>o ama 0.10 plag 1.44 0.05 1.43 0.00 0.1314 0 1 3 1 5 0.1316 0.1317 0.1318 0 1 3 1 9 0 1 3 2 0 0 1 3 2 1 0.1322 **K**6

Same slice as previous slide

Left axis: axial Ward identity quark masses in lattice units Right axis: Plaquette (roughly, energy density of gauge sector)

Analytics: "multirep Pisarski-Wilczek"

Generalization of calculation by Pisarski and Wilczek [PW 1984] Recently extended to high order for complex, real irreps [Pellisetto, Vicare 2003, 2005, 2005']
Idea: Does 3D EFT of scalar/pseudoscalar modes have any stable fixed points? If not, transition must be first order!

Inputs:

Chiral symmetry breaking pattern

 $SU(N_4)_L \times SU(N_4)_R \times SU(N_6^w) \times U(1)_A \rightarrow SU(N_4)_V \times SO(N_6^w)$

Transition occurs simultaneously for 4 and 6 (as observed)

Work to first order in ϵ expansion

Result: No stable fixed points ⇒ Transition must be first-order Applies to both Ferretti model and lattice deformation

[arXiv:1712.01959]

Transition temperature

Roughly: $T_c \sim 0.2/\sqrt{t_1}$

Comparison with QCD: In QCD: $1/\sqrt{t_0} \approx 1380 \text{ MeV}$ [MILC <u>arXiv:1503.02769</u>] $\Rightarrow 1/\sqrt{t_1} = 770 \text{ MeV}$ $\Rightarrow T_c \sim 150 \text{ MeV}$

Phenomenology: Experimental bound: $F_6 \gtrsim 1.1 \text{ TeV}$ $\Rightarrow 1/\sqrt{t_1} \gtrsim 3.7 \text{ TeV}$ $\Rightarrow T_c \gtrsim 720 \text{ GeV}$

Conclusions

Theory "acts like QCD"

- Pseudoscalar spectrum described by χ PT
- Vector resonances probably broad [but narrower than QCD]
- Baryon spectrum described by quark model
- Phase structure like QCD's [except transition is first-order]
- Transition temperature QCD-like
- Fitting to models (physically-motivated and empirical) has been a very fruitful, efficient approach
- Many predictions to make contact with phenomenology