Set 9 - due 5 April

"Some things are so serious that all you can do is joke about them." - N. Bohr

1) [30 points] The Lagrange density for a two component self-interacting scalar field is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left[\left(\partial_{\mu} \phi_{1}\right)\left(\partial^{\mu} \phi_{1}\right)+\left(\partial_{\mu} \phi_{2}\right)\left(\partial^{\mu} \phi_{2}\right)\right]+\frac{1}{2} \mu_{0}^{2}\left[\phi_{1}^{2}+\phi_{2}^{2}\right]-\frac{\lambda}{4!}\left[\phi_{1}^{2}+\phi_{2}^{2}\right]^{2} . \tag{1}
\end{equation*}
$$

For $\mu_{0}^{2}>0$ with the sign conventions as shown, the vacuum has broken symmetry and there is a Goldstone boson.
(a) [15] A nice way to see this is to consider the change of variables to two new fields $\rho(x, t)$ and $\chi(x, t)$ with $\phi_{1}(x, t)=\rho(x, t) \cos \chi(x, t)$ and $\phi_{2}(x, t)=$ $\rho(x, t) \sin \chi(x, t)$ or $\phi(x, t)=\phi_{1}(x, t)+i \phi_{2}(x, t)=\rho(x, t) e^{i \chi(x, t)}$. Show that ρ is the massive field and χ is the Goldstone boson. Compute the mass of the Higgs $\left(r h o(x, t)=\rho_{o}+\eta(x, t)\right)$ field to make sure you get the same answer as in class.
(b) [10 points] Perhaps you recall that Eq. 1 has a conserved current due to the symmetry

$$
\binom{\phi_{1}^{\prime}}{\phi_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \tag{2}\\
-\sin \alpha & \cos \alpha
\end{array}\right)\binom{\phi_{1}}{\phi_{2}} .
$$

Re-derive the expression for the associated Noether current in terms of $\left(\phi_{1}, \phi_{2}\right)$. Then make the change of variables into (ρ, χ) and reconstruct J^{μ}. Notice (and compute) the form of the symmetry transformation and the conserved current in the (ρ, χ) variables. This "shift symmetry" is often used as a diagnostic for the presence of Goldstone bosons.
(c) [5] Next, suppose that the last symmetry of the Lagrangian is broken by a term $V^{\prime}=-\epsilon \phi_{1}$. Show that the Goldstone bosons also get a mass, and that $m_{\chi}^{2} \simeq \epsilon / \rho_{0}$ where ρ_{0} is the vacuum expectation value of the ρ field. This behavior is seen in ferromagnets, in the presence of an external magnetic field, and in QCD, where the pion is the Goldstone boson and ϵ represents the quark mass. (Pedantic people call this small mass particle a "pseudo Goldstone boson.")

Oftentimes, the literature will make an assumption that one is working at momentum scales much less than the Higgs mass and the radial degree of freedom is "frozen" to ρ_{0}.
2) [15 points] A plane wave is represented by a four-potential

$$
\begin{equation*}
A^{\mu}=a^{\mu} \exp i k^{\alpha} x_{\alpha} \tag{3}
\end{equation*}
$$

where a^{μ} is a constant four-vector and $k^{\mu} k_{\mu}=0$.
(a) [3 points] If the electromagnetic field is in Lorentz gauge, how are the a^{μ} 's related?
(b) [3 points] Find an expression for $F^{\mu \nu}$ and (c) [3 points] show that $F^{\mu \nu} k_{\nu}=0$.
(d) [6 points] Show that $\vec{B} \times \vec{k}=\omega \vec{E} / c$ follows from (c).

