Set 7 - due 8 March

The midterm exam will be in Duane G2B41 on Thursday, March 14, 7:00-8:30 PM
"The nonmathematician is seized by a mysterious shuddering when he hears of 'four-dimensional' things, by a feeling not unlike that awakened by thoughts of the occult. And yet there is no more commonplace statement, that the world in which we live is a four-dimensional space-time continuum."-A. Einstein

1) [10 points] Compton scattering. You might recall that when a photon scatters off a free electron, its wavelength is shifted. Derive the Compton formula. The invariants s, t and u from last week are quite useful. You are working in a frame where the photon comes in along the z direction, so $p_{1}=(E, 0,0, E / c)$, the electron has $p_{2}=\left(m c^{2}, 0,0,0\right)$ and the outgoing photon is $p_{3}=\left(E^{\prime}, 0,\left(E^{\prime} / c\right) \sin \theta,\left(E^{\prime} / c\right) \cos \theta\right)$. Recall the relation between photon energy and wavelength, $E=h c / \lambda$. I think I have the c's right in the momenta, but I put them in by hand at the end.
2) [15 points] A particle originally at rest and with initial rest energy $m_{1}=$ $m+\Delta E$ emits a photon and decays to a particle of rest energy m. What is the energy of the photon? Check explicitly the limiting cases $m \gg \Delta E$, and $m=0$. ($c=1$ here $)$. Analogs of these cases are the decay of the 2 P state of hydrogen to the 1S state, and the decay Higgs $\rightarrow \gamma \gamma$.
3) [20 points] A beam of light of frequency ω travelling in the $x-y$ plane (at an angle θ_{0} with respect to the x axis) is reflected from a mirror moving with velocity v in the x direction. Calculate (a) [10 points] the frequency of the reflected beam and b) [10 points] the angle of reflection (in the frame where the incident angle is θ_{0}).
