Set 4 - due 16 February

"Diffraction problems are amongst the most difficult ones encountered in optics." (From "Principles of Optics," Born and Wolf)

1) [20 points] Jackson 10.9a. Use the Born approximation. The integral peaks strongly in the forward direction, so you can replace $q a \simeq k a \theta, d \cos \theta=\theta d \theta$, and take the range of θ from 0 to infinity. You'll get an integral

$$
\begin{equation*}
\sigma \simeq 2 \pi|\epsilon-1|^{2} k^{2} a^{4} \int_{0}^{\infty} x d x \frac{j_{1}(x)^{2}}{x^{2}} \tag{1}
\end{equation*}
$$

At that point Bessel function identities near Jackson 9.90 might be useful.
Notice how the Rayleigh k^{4} is softened by the extended source to $\sigma \sim k^{2}$.
2) [20 points] Jackson 10.11. (a,b only). Hint: expand

$$
\begin{equation*}
R=\left[\left(x-x^{\prime}\right)^{2}+y^{\prime 2}+z^{2}\right]^{1 / 2} \sim z\left[1+\frac{\left(x-x^{\prime}\right)^{2}+y^{\prime 2}}{2 z^{2}}+\ldots\right] \tag{2}
\end{equation*}
$$

For Fresnel integrals, see Wikipedia "Fresnel Integral," Abramowitz and Stegun, p. 300, or Morse and Feshbach, p. 816. There does not seem to be a standardized notation for these functions.
3) [20 points] Jackson 10.12. In (a), work in the Fraunhofer limit. It is quite similar to the calculation done on pp. 491-492, (it is basically "solve by copy") except that the initial polarization is $\vec{\epsilon}_{0}=\hat{y}$. For part (b), use the Dirichlet formula, 10.85. (drop the $+i /(k R)$)

