Set 10 - 12 April

"The secret to creativity is knowing how to hide your sources." - A. Einstein

1) [20 points] Jackson 12.6. Instead of part (a), show that a Lorentz transformation can be made, to go to a frame where $\overrightarrow{B^{\prime}}$ and $\overrightarrow{E^{\prime}}$ are parallel, and that the boost velocity satisfies the equation

$$
\begin{equation*}
\frac{\vec{\beta}}{1+\beta^{2}}=\frac{\vec{E} \times \vec{B}}{E^{2}+B^{2}} \tag{1}
\end{equation*}
$$

As a hint, you can start by arguing that the boost velocity is $\vec{\beta}=\lambda(\vec{E} \times \vec{B})$ at the beginning of your calculation, and then determine λ.

In part (b), note the Jacksonian phrase "with appropriate constants of motion."
2) [20 points] Jackson 12.3. In part (b) I obtained

$$
\begin{equation*}
\frac{e E_{0} x}{\gamma_{0} m c^{2}}=\cosh \left(\frac{e E_{0} y}{\gamma_{0} v_{0} m c}\right)-1 \tag{2}
\end{equation*}
$$

