
Units etc

Systems of units are human constructs. They are designed to accomplish at
least two goals:

• Produce order unity numbers for calculations

• Build in physics constraints which are known to be true

This sounds very peculiar! In an undergraduate class, one might begin with elec-
tricity and magnetism as separate interactions with their own unit conventions,
and eventually discover that µ0ǫ0 = 1/c2. But you are not undergraduates, and
this unification was done long ago. Why not move on?

You will encounter (at least) three unit systems in electrodynamics. They
are MKS/MKSA/SI (kilograms, etc), CGS, and Lorentz-Heaviside (which is
CGS with re-arranged 4π’s). Lorentz-Heaviside is the standard in quantum
field theory. They differ in

• Relation of charge and current to force

• Relative normalization of E and B

All these unit systems maintain the “known physics” of special relativity, in par-
ticular, that light moves at velocity c. Charge is conserved in electromagnetism
and the unit systems maintain that, too.

In addition, you will encounter “natural units,” where c = 1 and h̄ = 1.
More on this below.

Everyone starts simply with the continuity equation for the current density
~J and the charge density ρ:

~∇ · ~J +
∂ρ

∂t
= 0. (1)

No magnetic monopoles:
∇ · ~B = 0 (2)

and this introduces the vector potential, ~B = ~∇× ~A. It’s the same convention
for all unit systems.

Faraday’s law is

~∇× ~E + k3
∂ ~B

∂t
= 0 (3)

and the constant k3 sets the relative dimensionality of E and B. Introducing
brackets to label the dimensionality of a quantity,

[E]

[B]
= k3

[L]

[T ]
(4)

(In CGS, k3 = 1/c and E and B have the same units.)
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Gauss’ law relates E and ρ:

~∇ · ~E = 4πk1ρ. (5)

Always writing ~E = −~∇Φ+ . . ., the field and potential for a point charge are

~E = k1
q

r2
r̂; Φ = k1

q

r
. (6)

We can define units for q and use k1 to convert electric forces to “ordinary
forces” (whatever that means – think about it!). This is what MKS does.
Alternatively, we can define k1 and the units of charge come from units of
mechanical force plus k1. This is what CGS does: in CGS k1 = 1 and [q2] =
[energy × length] since energy is qΦ. Since h̄c has the same units of [energy ×
length], the fine structure constant e2/(h̄c) = 1/137 is a pure dimensionless
number in CGS.

Continuity plus Gauss’ law tells us that

~∇ · [ ~J +
1

4πk1

∂ ~E

∂t
] = 0. (7)

We use the term in square brackets, the sum of ordinary current and displace-
ment current, to source the magnetic field. We know the curl ofB is proportional
to the current density, so we write

~∇× ~B = 4πAk2[ ~J +
1

4πk1

∂ ~E

∂t
] (8)

where A is another constant. The J term by itself can be used to give B for
a long straight wire and then from the magnetic part of the Lorentz force law,
the force per unit length between two parallel wires a distance d apart is

dF

dl
=

BI ′

A
= 2k2

II ′

d
. (9)

I is a current, so regardless of the units of q, [I] = [q/t]. k2 is like k1, in that
it connects a mechanical force to a magnetic quantity. Forces are also forces,
so we can compare the units of electrostatic forces with magnetic ones, and we
discover

[
k1
k2

] = [
l2

t2
] (10)

The experimental ratio of magnetostatic to electrostatic forces fixes this ratio
to be c2. In the convention table, this constraint is hardwired. (Maybe long ago
you would have let it be a free parameter.)

Also

[E] = [F/q] = [
BId

Aq
] =

[B]

A

d

t
(11)

or
E

B
=

1

A

d

t
(12)
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System k1 k2 A k3 α V (r)

Gaussian (CGS) 1 1/c2 c 1

c
e2

h̄c
e2

r

Lorentz-Heaviside 1/(4π) 1/(4πc2) c 1

c
1

4π
e2

h̄c
e2

4πr

MKSA 1

4πǫ0
= 10−7c2 µ0

4π
= 10−7 1 1 1

4πǫ0

e2

h̄c
e2

4πǫ0r

Table 1: Constants in various conventions (modified from Jackson). The fine
structure constant uses the physical electron charge (1.6×10−19C in MKS – you
almost never need to know that!) It is the dimensionless number 1/137.035 . . ..
The last column is the formula for the potential energy between two charges a
distance r apart.

again tells you the ratio of dimensions of E and B. You can also get this from
the Lorentz force law,

~F = q[ ~E +
~v

A
× ~B]. (13)

Note also, k3 has units of 1/A from Faraday’s law.

Finally, if ~J = 0 the two curl equations give you

∇
2 ~B − [k3A

k2
k1

]
∂2 ~B

∂t2
= 0. (14)

The object in the brackets must equal 1/c2 to get radiation moving at the
velocity of light. From the static force ratio, k2/k1 = 1/c2 and k3A = 1.

We can summarize useful results in Table 1.
The 10−7 is an exact number. Notice that if you are working in MKS, you

never need to know ǫ0. If you are working in CGS you never need to know e. If
you are only doing electrostatics, or only doing magnetostatics, you can forget
that there is any connection between electricity and magnetism. That is what
we will do this semester. In that case, MKS is nice: physical batteries deliver
voltages in volts, an ampere is an interesting current. If you are doing atomic
physics, MKS is not nice, and you will run into a lot of big exponents which
make it easy to make mistakes, and hard to keep track of the relative sizes of
various effects.

Essentially all quantum field theory is done using Lorentz - Heaviside units.
The reason is that most perturbative calculations are done in momentum space
(not coordinate space). The quantities 1/q2 and 1/(4πr) are Fourier transforms
of each other. In Lorentz - Heaviside units the annoying 4π’s are pushed into
places where one does not need to go (usually) – typically into coordinate space
formulas.

All of this discussion was done at the level of Maxwell’s equations, and the
Lorentz force law makes a fifth equation. Is everything consistent? This is very
annoying to check. The right way to tell this story is to start with a Lagrange
density for electrodynamics, and to think of Maxwell’s equations as equations of
motion which arise from varying the Lagrangian. The Lorentz force law comes
from thinking about momentum conservation in terms of field variables. We
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will do that next semester. (For now, it is overkill.) But, knowing that this is
coming, I can say a few more things about units.

First of all, E and B are not independent: they are elements of a rank -two
tensor, called the field strength tensor, Fµν . The vector and scalar potentials
are also not independent; they are components of a rank - one tensor (a vector).
Under a Lorentz transformation, the potentials mix (as do the components of
E and B). That being the case, it seems absurd to me to think of E and B, or
Φ and A, as having different units.

In fact, when you are working at this level, it is absurd to give quantities
like Φ and A different names. Treat them as components of one object, with
an index! Then it is easy to build in the symmetries which you want your
dynamics to encode. Again, the purpose of notation is to make your life easy,
not to complicate it.

Second, the distinction between “charge units”’ and “mechanical units”
seems very capricious. Where do mechanical forces come from, after all? The
language of modern quantum field theory does not make this distinction. The
Lagrangians we use are built out of physical degrees of freedom (for electro-
dynamics, these are the potentials Φ and A) and a set of coupling constants,
quantities which multiply terms in the Lagrangian. For a free nonrelativistic
particle,

S =

∫
dtL(q, dq/dt) =

∫
dt
1

2
m(

dq

dt
)2. (15)

The coordinate q is the analog of the field variable and m is the analog of
a coupling constant. Some coupling constants (like m) carry an engineering
dimension and some (like the charge) are dimensionless. (I am now thinking
about e2/(h̄c), of course.) But never mind, they are all coupling constants.

All the constants (K’s, A, the 4π’s of CGS vs Lorentz - Heaviside in the
Maxwell equations will take care of themselves when you write a Lagrange
density and vary it: CGS versus Lorentz-Heaviside is just

L = −
1

4
FµνF

µν (16)

versus the choice

L = −
1

16π
FµνF

µν . (17)

Doing relativistic electrodynamics in MKS is just a mess and I don’t know
anyone who does serious calculations in those units.

Finally, natural units, c = h̄ = 1. You probably won’t see these in a first
year graduate course, but when you get to the real world, this will be all that
there is.

With c = 1 you are treating time as a component of x = (x0, ~x) = (ct, ~x)
so you can measure time or distance in cm or sec, and multiply or divide by
c = 3× 108m/s to get back to high school units. We are using

[L] = [T ]. (18)
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Next, h̄ = 1. This means that [E] = 1/[T ] = 1/[L]. An energy is an inverse
time. Use h̄c = 2000 eV-Angstroms or 200 MeV-fm to convert energies into
inverse lengths or inverse times.

In fact, if you are doing atomic physics, even if you are keeping h̄ and c
around, multiply and divide by h̄c, convert e2 into e2/(h̄c), convert the electron
mass into mec

2 = 0.511 KeV, remember the formula for the Bohr radius and the
Rydberg (1/2 Angstrom and 13.6 eV), work in terms of Angstroms and eV’s,
and never never never think about MKS values of anything.
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