“The nation that controls magnetism will control the universe” – Dick Tracy (1935)

1) Jackson 5.27 [10 points]

2) Jackson 5.33 [10 points] (a)–5, (b)–5.

3) Jackson 5.34 [20 points] (a)–3: Use the formula given in Problem 5.10b as the start. (b)–7; (c)–7; (d)–3: No discussion of Prob. 5.18 is needed.

4) Jackson 6.8 [20 points]
 The hard part of this problem is the start. \(\vec{P} \) always follows \(\vec{E} \), so \(\vec{P} \) points along \(\hat{x} \). You need the surface magnetic pole density \(\sigma_M = \vec{M} \cdot \hat{n} \) to source \(\Phi_M \). Once you have it, the problem comes apart in your hands.
 There are (at least) three ways to begin. First, you could use the surface current density \(\vec{K}_M \) and surface magnetization \(\vec{M} \), \(\vec{K}_M = \vec{M} \times \hat{n} \) where \(\hat{n} \) is an outward normal to the surface. The surface current density comes from the surface polarization density \(\vec{K} = \sigma_P \vec{v} \) where \(\sigma_P \) is the surface polarization charge density, and \(\vec{v} = \vec{\omega} \times \vec{r} \). \(\vec{K} = \vec{M} \times \hat{n} \) so \(\vec{M} = \hat{k} \omega P_0 \hat{x} \) where \(P_0 \) is the magnitude of the polarization vector.
 Second, you could look at the volume magnetization \(M \) and find the volume current \(\vec{J}_M = \vec{\nabla} \times \vec{M} \). You imagine a little dipole whose head and tail are separated by a small difference, so \(\vec{J} = N q (\vec{v}_+ - \vec{v}_-) \). This is nice, but wrong by a sign – the dipole remains oriented along \(\hat{x} \), so the charge hops from dipole to dipole in the opposite direction to what you have found. You can find \(\vec{M} \) from \(\vec{J}_M = \vec{\nabla} \times \vec{M} \), you discover \(\vec{\nabla} \cdot \vec{M} = 0 \) and construct \(\sigma_M \).
 The third way is to look around Jackson Eq. 6.100: a material in bulk motion acquires an effective magnetization \(\vec{M}_{ff} = \vec{P} \times \vec{v} \). The derivation is awful, it is fiddling along the lines of Eqs. 6.93-6.96.