Set 8 - due 27 October

"As usual, mathematical calculations could not win over unexpected conditions." - D. Eisenhower

1) Jackson 5.3 [10 points] The classic problem of the solenoid...
2) (a) [7 points] Continuing this problem, show that near the axis and near the center of the solenoid (length L and radius R) the magnetic induction is mainly parallel to the axis, but has a small radial component

$$
\begin{equation*}
B_{\rho}=24 \mu_{0} N I \frac{R^{2} z \rho}{L^{4}} \tag{1}
\end{equation*}
$$

correct to order R^{2} / L^{2} and for $z \ll L, \rho \ll R$. The coordinate z is measured from the center point of the solenoid, with the ends of the solenoid at $z= \pm L / 2$. (b) [3 points] Show that at the end of a long solenoid the magnetic induction near the axis has components

$$
\begin{equation*}
B_{z} \simeq \frac{\mu_{0} N I}{2}, B_{\rho} \simeq \frac{\mu_{0} N I}{4} \frac{\rho}{R} . \tag{2}
\end{equation*}
$$

Hint: there is a short way to do this, or a very long way.
3) Jackson 5.13 [20 points]
4) [20 points] The Helmholz coil is a pair of circular current loops of radius a with a common axis, separated by a distance $2 b$ which is chosen to make the second derivative of \vec{B} vanish at a distance at a point on the axis halfway between the two coils. Show that this distance is $2 b=a$ and also find the coefficient C in the Taylor expansion

$$
\begin{equation*}
B_{z}(b+\delta)=B_{z}(b)\left(1+C\left(\frac{\delta}{a}\right)^{4}+\ldots\right] \tag{3}
\end{equation*}
$$

You'll probably have to start by finding B for a single coil along its axis; this is simple Biot-Savart cranking.

This problem is a bit messy but if you are a table top experimentalist you might actually use Helmholz coils someday.

