Set 6-due 13 October

The midterm will be Tuesday, October 10, 7-830 PM, in G-131.
"If you're very good at calculus you could probably figure out a way to do it without thinking" - F. E. Low

1) [20 points] Write down the Dirichlet Green's function for electrostatics for a two-dimensional square of length $a,(0<x<a, 0<y<a)$, expanding in sine waves with a double sum, like in Eq. 3.167. Now suppose that the potential is specified to be $V=0$ on all sides except the side at $y=a$ and $\Phi(x, a)=V(x)$. Work out down the appropriate formula for $\Phi(x, y)$ and look at it - does it not seem to show peculiar behavior as $y \rightarrow a$? To be definite, set $V(x)=\sin (\pi x / a)$, do the integral, and you'll find $\Phi(x, y)=\sin (\pi x / a) F(y)$. Plot partial sums of $F(y)$ (summing say the first n terms). What's going on? Are there alternate version of Green's functions which will not show this behavior?
