Set 5-due 6 October

"The climbing as a whole is not very esthetic or enjoyable; it is merely difficult." Yvon Chouinard

1) Jackson 2.12 [15 points] Don't begin with (2.71) - take a solution with separate $\sin (n \phi)$ and $\cos (n \phi)$ coefficients.
2) Jackson 2.13 [20 points] (a)-15, (b)-5. For some psychological reason, I found it easier to do this problem measuring my angle from the intersection of the two potential values (i, e., $V=V_{1}$ for $0<\phi<\pi$), then changing variables at the end to Jackson's convention.
3) Jackson 3.20 [20 points]. (a)-8 (b) -5 (c)-7. Omit all the discussion about 3.19. Just work this problem in cylindrical coordinates, and find the Dirichlet Green's function by beginning with

$$
\begin{equation*}
\delta\left(z-z^{\prime}\right)=\frac{2}{L} \sum_{n} \sin \frac{n \pi z}{L} \sin \frac{n \pi z^{\prime}}{L} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta\left(\phi-\phi^{\prime}\right)=\frac{1}{2 \pi} \sum_{m} \exp \left(i m\left(\phi-\phi^{\prime}\right)\right) \tag{2}
\end{equation*}
$$

(redoing the derivation on p. 125-126). In part (c) you will have to look up one integral over a Bessel function. Do you recall the reciprocity problem from Set 1 ?

