Set 9 - due 7 April

This homework is due the week after spring break. I'll be out of town next week at a workshop and we will have a guest lecturer, John Bohn, giving three lectures on molecules. He's an expert so this should be interesting. I'm putting the problem set out (very) early because I don't want to burden him with handing it out etc.

1) [40 points] Nuclei sometimes decay from their excited states to their ground state by a process called "internal conversion," a process in which one of the $1 s$ electrons is emitted instead of a photon. Suppose the initial and final nuclear wave functions be $\phi_{I}\left(\vec{r}_{1}, \vec{r}_{2} \ldots, \vec{r}_{A}\right)$ and $\phi_{F}\left(\vec{r}_{1}, \vec{r}_{2} \ldots, \vec{r}_{A}\right)$ where \vec{r}_{i} for $i=1$ to Z label the protons and $i=Z+1$ to $i=A$ label the neutrons. The perturbation giving rise to the transition is just the nucleus - electron Coulomb interaction

$$
\begin{equation*}
V=-\sum_{i=1}^{Z} \frac{e^{2}}{\left|\vec{r}-\vec{r}_{i}\right|} \tag{1}
\end{equation*}
$$

where \vec{r} is the electron coordinate. Thus the matrix element is (here V in $1 / \sqrt{V}$ is the volume, of course)

$$
\begin{equation*}
\langle f| T|i\rangle=-\int d^{3} r \prod_{j=1}^{A} d^{3} r_{j} \phi_{F}^{*} \frac{1}{\sqrt{V}} e^{-i \vec{p} \cdot \vec{r} / \hbar}\left(\sum_{i=1}^{Z} \frac{e^{2}}{\left|\vec{r}-\vec{r}_{i}\right|}\right) \phi_{I} \psi_{100}(r) \tag{2}
\end{equation*}
$$

Compute the rate for the process for a dipole transition in terms of

$$
\begin{equation*}
\vec{d}=\int \prod_{j=1}^{A} d^{3} r_{j} \phi_{F}^{*}\left(\sum_{i}^{Z} \vec{r}_{i}\right) \phi_{I} \tag{3}
\end{equation*}
$$

by making use of the expansion

$$
\begin{equation*}
\frac{1}{\left|\vec{r}-\vec{r}_{i}\right|} \simeq \frac{1}{r}+\frac{\vec{r} \cdot \vec{r}_{i}}{r^{3}} \tag{4}
\end{equation*}
$$

Assume the outgoing electron is nonrelativistic. You can leave the final radial integral undone if you pull off all the dimensionful factors (leaving a dimensionless integral), and then if you show that the dimensions for Γ the inverse lifetime work out.

Deal with the outgoing state using the useful identity

$$
\begin{equation*}
\exp (i \vec{p} \cdot \vec{x} / \hbar)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} 4 \pi(i)^{l} j_{l}(p r / \hbar) Y_{l}^{m}(\theta, \phi)^{*} Y_{l}^{m}\left(\theta^{\prime}, \phi^{\prime}\right) \tag{5}
\end{equation*}
$$

where (θ, ϕ) are the angles for $\vec{r},\left(\theta^{\prime}, \phi^{\prime}\right)$ are the angles for \vec{p}, and $j_{l}(x)$ is a spherical Bessel function.

If you are curious, you can keep going: The radial integral left undone is

$$
\begin{equation*}
\hat{I}=\int_{0}^{\infty} d r \exp \left(-Z r / a_{0}\right) j_{1}(p r / \hbar) \tag{6}
\end{equation*}
$$

which we can write as either

$$
\begin{equation*}
\hat{I}=\frac{a_{0}}{Z} \int_{0}^{\infty} d y e^{-y} j_{1}\left(\frac{p a_{0}}{\hbar Z} y\right)=\frac{a_{0}}{Z} I\left(\frac{p a_{0}}{\hbar Z}\right) \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\hat{I}=\frac{\hbar c}{p c} \int_{0}^{\infty} d w j_{1}(w) \exp \left(-\frac{Z \hbar}{a_{0} p} w\right)=\frac{\hbar c}{p c} J\left(\frac{Z \hbar}{a_{0} p}\right) \tag{8}
\end{equation*}
$$

And there is some physics I didn't tell you: nuclear energy differences are much greater than electronic ones, so $p a_{0} /(\hbar Z)$ is huge. You can use this fact to simplify the integral and get a cute answer.
2) [10 points] Consider a sample of diatomic molecules which are polarized so that the atoms lie along the \hat{y} axis. Neutrons are scattered off the nuclei. (The beam comes along the \hat{z} direction.) The potential is very short range so we can regard it as a delta-function

$$
V(r)=V_{0} \delta(y-b) \delta(x) \delta(z)+V_{0} \delta(y+b) \delta(x) \delta(z)
$$

Compute the differential cross section in Born approximation. Where does it have nodes? What is going on?

