Set 11 - due 21 April

1) [15 points] Evaluate the cross section for a spherical square well $\left(V(r)=-V_{0}\right.$ for $r<R, V(r)=0$ otherwise) at low energy when the potential is very weak. Your hierarchy of scales is $1 \gg 2 m V_{0} R^{2} / \hbar^{2} \gg R^{2} k^{2}$ where the CM energy is $E=\hbar^{2} k^{2} /(2 m)$. It's useful to find the s-wave phase shift first, and then take the limit. You can compare your answer to the $q \rightarrow 0$ limit of the Born approximation from Set 8 .
2) [10 points] Often a resonance is narrower than the resolution of one's instruments. Show how measuring

$$
\begin{equation*}
\Sigma_{i j}=\int_{E_{0}-\Delta E}^{E_{0}+\Delta E} d E \sigma_{i \rightarrow j}(E) \tag{1}
\end{equation*}
$$

around a resonance at E_{0}, where $\Delta E \gg \Gamma$ the total width of the state, can give information on branching ratios.
3) [15 points] Calculate and graph the total unpolarized (spin-averaged) neutronproton cross section for laboratory kinetic energies from threshold to 20 MeV , given the following low energy parameters: Singlet: $a^{S=0}=-24.5 \times 10^{-13} \mathrm{~cm}$, $r_{0}^{S=0}=2.7 \times 10^{-13} \mathrm{~cm}$. Triplet state: deuteron binding energy is 2.23 MeV , $r_{0}^{S=1}=1.7 \times 10^{-13} \mathrm{~cm}$.
4) [15 points] Starting from the boundary condition for S-wave scattering from a square well of radius r_{0}, depth $-V_{0}$,

$$
\begin{equation*}
k \cot \left(k r_{0}+\delta\right)=K \cot \left(K r_{0}\right) \tag{2}
\end{equation*}
$$

(k is the wave number for $r>r_{0}, K$ is the internal wave number) show that

$$
\begin{equation*}
S(k)=e^{2 i \delta}=e^{-2 i k r_{0}} \frac{K \cot \left(K r_{0}\right)+i k}{K \cot \left(K r_{0}\right)-i k} \tag{3}
\end{equation*}
$$

has poles at the known bound state energies of the square well. Hint: recall

$$
\begin{equation*}
e^{2 i \delta}=\frac{\cot \delta+i}{\cot \delta-i} \tag{4}
\end{equation*}
$$

