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Abstract
These are some fragmentary notes written in about 2017 for a graduate quantum field theory

class. The first part is a discussion of conventions for fields and scattering amplitudes in quantum

field theory. It introduces (and tries to motivate) the most used definitions in the literature. The

second part describes Hamiltonian methods for scalar field theory: the Dyson series, the S-matrix,

and then a set of calculations of scattering amplitudes. The goal is to introduce and motivate

Feynman rules and Feynman diagrams. The third part describes the path integral for Abelian

gauge theory (written so the non-Abelian generalization is obvious). I conclude with a reading list.

I. CONVENTIONS FOR FIELDS AND SCATTERING AMPLITUDES

A. Particles in a box

Begin with free particles in a box of volume V = L3. A free particle amplitude is

ψ(x) = 〈x|k〉 = 1√
V
eikx (1)

The momentum in direction j is quantized as kj = 2πnj/L where nj is an integer for periodic
boundary conditions. States are normalized so

〈~k|~k′〉 = δnn′ (2)

and completeness is

1 =
∑

n

|k〉〈k| =
∫

V

(2π)3
d3k|~k〉〈k| (3)

slightly abusing notation to treat k as continuous. (It is the usual dnx = Ldkx/(2π) story.)

That is the phase space factor – the number of states between ~k and ~k + d~k is

dN =
V

(2π)3
d3k. (4)

If ψ(x) is a Schrödinger wave function, the probability density ρ = ψ∗ψ = 1/V . The current
is

~J =
1

2im
ψ∗~∇ψ − (~∇ψ)∗ψ =

k

m

1

V
=
~v

V
(5)

where ~v is the particle’s velocity.
The Golden Rule begins by defining the transition probability per unit time dΓ in terms

of the T-matrix 〈f |T |i〉 from a state |i〉 at time t = 0 to a state |f〉 at time T ,

dΓ =
1

T
lim
T→∞

|〈f(T )|T |i(0)〉|2. (6)

Consider a process where |i〉 is a two particle state, i = 1 to 2, and |f〉 is nf outgoing
particles, j = 1 to nf . Let’s assemble all the pieces for a formula for the differential cross
section.
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First, in dΓ there is a phase space factor for each outgoing particle,

nf
∏

n=1

V
d3kn
(2π)3

. (7)

Next, in 〈f(T )|T |i(0)〉 there will be a factor coming from the exponentials from the time
dependence of the unperturbed states,

∫ T

0

dtei∆ωt =
ei∆ωT − 1

i∆ω
(8)

where ∆ω =
∑2

i=1Ei −
∑nf

j=1Ef . This will square (the usual squaring of the delta function
story) to give the Golden Rule expression

dΓ = 2πδ(∆ω)|〈f |T |i〉|2
nf
∏

n=1

V

(2π)3
d3kn. (9)

The cross section is defined as the ratio

dσ = dΓ× 1

flux
(10)

where the flux factor is flux = |J | = vrel/V and vrel = v1 − v2. Finally, it is often the case
that momentum is conserved. Component by component the T-matrix will involve integrals
of the form

〈f |T |i〉 ∝
∫

V

d3xei∆kx = V δ~nf ,~ni
=

∏

i=x,y,z

ei∆kiL − 1

i∆ki
, (11)

where the first identity involves the integer-counting for the wave numbers, quantized in the
box, and the second equality comes from taking k as continuous and doing the integral over
the box. We must square the T-matrix and take the volume to be large. The mathematics
is identical to what is encountered in squaring the frequency delta function and going to
long times, Eq. 8 from the time integral, to give Eq. 9. Putting all the pieces together,

dσ =
V

vrel
|〈f |T̂ |i〉|2 × (2π)4δ(

∑

ωf −
∑

ωi)

×V δ3(
∑

~kf −
∑

~ki)

×
nf
∏

n=1

V
d3kn
(2π)3

.

(12)

The leading V is from the flux and the V in the middle is from squaring the momentum
conservation delta function. The reduced T-matrix 〈f |T̂ |i〉 is the full T-matrix 〈f |T |i〉 with
the overall momentum-conserving delta functions (pick the phrase you like best) snipped
off, or divided out, or thrown away. Typically, it will involve an integral over all the relative
coordinates, since overall space translation invariance is where over momentum conservation
comes from. It is proportional to (1/

√
V )nf+2 because there are nf + 2 free particle wave

functions in it, each carrying a factor of 1
√
V (recall Eq. 1). And it gets squared. Overall,

all the volume factors cancel; the final result for the cross section will be independent of the
volume (as it should be).
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B. Delta function normalization

Alternatively, we can use delta-function normalization for plane wave states in an infinite
box. The normalization convention is

〈~k|~k′〉 = δ3(k − k′) (13)

so that
∫

d3k〈~k|~k′〉 = 1 (14)

and

1 =

∫

d3k|k〉〈k| (15)

so

〈x|k〉 = 1

(2π)3/2
eikx (16)

Now phase space is just
dN = d3k. (17)

There is a translation dictionary between the “box” T-matrix element and the “δ−function”
one, just because the definitions of the states, Eqs.1 and 16, are different. Writing the
dictionary in terms of volume-independent quantities, it is

[(2π)3](nf+ni)/2〈f |T |i〉δ−fn = V (nf+ni)/2〈f |T |i〉box. (18)

Either way this expression has no remaining 2π’s in it. Generally, each side will be propor-
tional to δ3(

∑

ki −
∑

kf).
To pass to the cross section, we have to square the matrix element. Unfortunately, doing

this while preserving the delta functions (note we are really squaring a delta function this
time) requires using wave packets. That is a little too much for me, but it is worked out in
Peskin and Schroeder, Sec. 4.6. The final answer involves

〈f |T |i〉 = 〈{kf}|T |{ki}〉 = (2π)4δ4(
∑

kf −
∑

ki)
T̃

(2π)3
(19)

and

dσ =
1

vrel
|T̃ |2(2π)4δ4(

∑

kf −
∑

ki)

nf
∏

j=1

d3kj . (20)

Note T̃ has factors of 2π in it, from the normalization of the states. They can be pulled out
into the phase space factor. This will give an expression identical to Eq. 11, but without
the volume factors. (They would have cancelled anyway.)

C. The normalization everybody uses

Finally, suppose we choose to normalize our states so that

〈~k|~k′〉 = Cδ3(k − k′) (21)
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where C is some convenient real constant. Then
∫

d3k〈~k|~k′〉 = |C|2 (22)

and

〈x|k〉 =
√
C

1

(2π)3/2
eikx (23)

while the completeness relation is

1 =

∫

d3k

C
|k〉〈k|. (24)

The Schrödinger current (recall Eq. 5) becomes

~J =
~k

m
C. (25)

This is a nonrelativistic formula, but in general the current is just C times a current defined
with some ordinary normalization, as in the earlier sections. The phase space factor is

dN =
d3p

C
(26)

and the cross section is

dσC = dσC=1 ×
1

C2+nf
. (27)

Notice that the T-matrix element will rescale–the cross section can’t change.
This convention seems stupid, but it is actually very clever. Why? It allows one to build

in Lorentz invariance in an explicit way. The most commonly used choice in the literature
is

C = 2E(k) (28)

where E(k) =
√
k2 +m2 is the energy. That is, a momentum eigenstate is

|~p〉 =
√

2E(p)a†p|0〉. (29)

(A quick check:

〈~q|~p〉 =
√

2E(q)
√

2E(p)〈0|aqa†p|0〉 (30)

and if we assume
[aq, a

†
p] = δ3(~q − ~p), (31)

the left hand side of Eq. 30 is 2Epδ
3(~q − ~p); compare Eq. 21.)

Why do this? It gives you several nice things:
First, the phase space factor is Lorentz invariant. It is

d3p

2E(p)(2π)3
(32)

per particle, evaluating the matrix element with pure exponentials and pulling out the 2π
factors from the T-matrix into the phase space. Why is this Lorentz invariant? It is

d3p

2E(p)
= d3pdEδ(E2 − p2 −m2)θ(E). (33)
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The θ(E) picks the positive energy solution to the delta-function (E = ±
√

p2 +m2 =
±E(p). The parts, d3pdE = d4pµ and δ(p2 +m2) are each separately Lorentz invariant, so
the product is, also. Now integrate E over the delta function, you get Eq. 33.

Next, recall our definition of the field operator,

φ(x)|~k〉 =
∫

d3p

(2π)3/2
√

2ω(p)
[ape

ipx + . . . ]. (34)

Contract it on a state |k〉:

φ(x)|~k〉 =
∫

d3p

(2π)3/2
√

2ω(p)
[ape

ipx + . . . ]
√

2E(k)a†k|0〉

=
eikx

(2π)3/2

√

2ω(k)
√

2ω(k)
|0〉.

(35)

The algebra is simple, the (2π)3/2 can be lumped in the phase space in Eq. 32. This will
give nice answers when you contract field operators against states.

For the Klein-Gordon equation, the continuity equation is

∂ρ

∂t
+ ~∇ · ~J = 0 (36)

where

ρ = φ∗∂φ

∂t
− φ

∂φ∗

∂t
(37)

and
~J = φ∗~∇φ− φ(~∇φ∗). (38)

We expect ρ and ~J form a four vector: Eq. 36 is ∂µJ
µ = 0.

The state

φ(x) |0〉 =
∫

d3p

(2π)3/2
√

2ω(p)
[ape

ipx + . . . ] |0〉

=

∫

d3p

2ω(p)
|p〉 (39)

(use Eqs. 31 and 29) is a linear superposition of single particle states . It’s almost the same
as the nonrelativistic convention, just with an extra 1/ω(p) ∼ 1/m in the nonrelativistic
limit. We can define a plane wave solution

Φk(x) = 〈0|φ(x)|k〉
= exp(ikx).

(40)

Obviously, this is “what we would expect” for the position space wave function for the single
particle state |p〉.

Compute ρ and ~J using Φk(x). We find ρ ∝ E(p), ~J ∝ ~p, that is, the probablilty current

(ρ, ~J) ∝ pµ obviously forms a four vector, because the components are of Jµ are proportional
to pµ.
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Next, look ahead to consider Lorentz transformations. p = (E, ~p) in one frame becomes
Λp = (E ′, ~p′) in another frame. States must transform unitarily,

|Λp〉 = U(Λ)|p〉 (41)

and operators must transform as

O → U(Λ)OU−1(Λ). (42)

U(Λ) is some unitary transformation.
What is awkward is that δ3(~p−~q) is not Lorentz invariant. However, Eδ3(~p−~q) is Lorentz

invariant:

Eδ3(~p− ~q) = E ′δ3(p′ − q′). (43)

This will mean that 〈q|p〉 = 2E(p)δ3(~p− ~q), the inner product of two states, will be Lorentz
invariant. To check the Lorentz invariance, perform a Lorentz transformation along direction
p3. Change variables in the delta function, and use the chain rule,

δ3(p− q) = δ3(p′ − q′)
dp′3
dp3

(44)

where p′3 = γ(p3 + βE) and E ′ = γ(E + βp3). Then

δ3(p− q) = δ3(p′ − q′)γ(1 + β
∂E

∂p3
). (45)

Since E2 = p23 + . . . , this is

δ3(p− q) = δ3(p′ − q′)
γ

E
(E + β

p3
E
E) = δ3(p′ − q′)

E ′

E
(46)

as required.
Creation operators are operators, and it happens that

U(Λ)a†pU
−1(Λ) =

√

E(Λp)

E(p)
a†Λp. (47)

This follows from

U(Λ)|~p〉 = |Λ~p〉 (48)

or (insert 1 = U−1(Λ)U(Λ))

U(Λ)a†p
√

E(p)U−1(Λ)U(Λ)|0〉 =
√

E(Λp)a†Λp|0〉. (49)

This uses U |0〉 = |0〉 – we are assuming that the vacuum is simple, the same in all frames
Anyway, now look at a field operator,

φ(x) =

∫

d3p

(2π)3/2
√

2ω(p)
[ape

ipx + . . . ] (50)
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Transform it: x′ = Λx, p′ = Λp, substitute in aΛp,

φ(Λx) =

∫

d3p

(2π)3/2
√

2ω(p)
[

√

ω(p′)

ω(p)
aΛpe

ik(Λx) + . . . ] (51)

Change variables from p to p′, use d3p/(2ω(p)) = d3p′/(2ω(p′)), and you discover that

φ(Λx) =

∫

d3p′

(2π)3/2
√

2ω(p′)
[ap′e

ip′x′) + . . . ]. (52)

Look at this closely: it says that φ(x) really is a scalar operator. Under a Lorentz transfor-
mation, it remains unchanged. (Only its argument, x, changes.)

Box normalization is much easier to work with, but then φ(x) is not a true scalar field,
in the sense of Lorentz transformations. Think about it, what is the box doing? Of course,
if the original Lagrange density is Lorentz invariant, like

L =
1

2
(∂µφ)

2 − V (φ), (53)

all predictions of the theory will be Lorentz invariant. However, with a choice of normal-
ization for states which does not know about Lorentz symmetry, the intermediate steps of
a calculation will not look Lorentz invariant. The Lorentz invariance of the final result will
seem to be a miracle, if you used noncovariant definitions for fields or states. It is better to
have a formalism where everything you work with has simple, known transformation prop-
erties so that Lorentz invariance can be observed every step of the way. Miracles are not
always good things!

Finally, in this convention, the differential cross section is

dσ =
1

4E1E2vrel
|T̃ |2(2π)4δ4(

∑

kf −
∑

ki)

nf
∏

j=1

d3kj
(2π)32E(kj)

(54)

and T̃ is the T-matrix with all extraneous factors of 2π, or
√
2E, and the overall momentum

conserving delta function stripped off. This looks very robotic (and it is). But now you
can use it, and you don’t need to think about where it came from. T̃ is often called the
“invariant ampltude” M . It is a scalar function of the momenta and other four vectors (like
polarizations) characterizing the scattering amplitude.

II. TIMEDEPENDENT PERTURBATION THEORY, THE S−MATRIX, LORENTZ

INVARIANCE, ANTIPARTICLES

A. Time dependent perturbation theory

We need approximate solutions for the time dependent Schrödinger equation. We assume
that the Hamiltonian can be written as H = H0 + H1, where H0 is “large” in some sense
and can be diagonalized. We further assume that H1 may be regarded as a perturbation.
The time evolution will be developed in terms of the eigenfunctions of H0.
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It is very useful to replace the time dependent wave function by a time evolution operator,
and to find matrix elements of that operator. It is defined through

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 (55)

and it obeys an equation of motion

ih̄
∂U(t, t0)

∂t
= HU(t, t0). (56)

Matrix elements of U connect initial states at some early time with final states at some later
time. What they encode is called the “transition amplitude” from the initial state to the
final state. It is defined as

Uβα(t, t0) = 〈β(t)|U(t, t0)|α(t0)〉 (57)

To find a practical expression for the evolution operator, let us define the “interaction
representation” perturbation

Ĥ1(t) = eiH0t/h̄H1(t)e
−iH0t/h̄ (58)

and the “interaction representation” evolution operator

Û(tf , ti) = eiH0tf/h̄U(tf , ti)e
−iH0ti/h̄. (59)

We want to solve

ih̄
∂

∂t
U(t, t0) = (H0 +H1)U(t, t0). (60)

In interaction representation, Eq. 60 becomes

ih̄
∂

∂t

[

e−iH0t/h̄ÛeiH0t/h̄
]

= (H0 +H1) e
−iH0t/h̄ÛeiH0t0/h̄. (61)

The left hand side is

ih̄
∂

∂t

[

e−iH0t/h̄ÛeiH0t0/h̄
]

=

[

H0e
−iH0t/h̄Û + e−iH0t/h̄ih̄

∂Û

∂t

]

eiH0t0/h̄, (62)

so
[

H0e
−iH0t/h̄Û + e−iH0t/h̄ih̄

∂Û

∂t

]

eiH0t0/h̄ = (H0 +H1)e
−iH0t/h̄ÛeiH0t0/h̄ (63)

or

ih̄
∂Û

∂t
=

(

eiH0t/h̄H
−iH0t/h̄
1

)

Û = Ĥ1Û . (64)

This is just a first order differential equation. Integrating it, we find

ih̄
[

Û(t, t0)− Û(t0, t0)
]

=

∫ t

t0

dt′Ĥ1(t
′)Û(t′, t0). (65)

Because Û(t0, t0) = 1, the evolution operator satisfies the integral equation

Û(t, t0) = 1− i

h̄

∫ t

t0

dt′Ĥ1(t
′)Û(t′, t0). (66)
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Like all Volterra integral equations, it can be solved by iteration:

Û(tf , ti) =1− i

h̄

∫ tf

ti

dt1Ĥ1(t) +

(

− i

h̄

)2 ∫ tf

ti

dt2

∫ t2

ti

dt1Ĥ1(t2)Ĥ1(t1)

+

(

− i

h̄

)3 ∫ tf

ti

dt3

∫ t3

ti

dt2

∫ t2

ti

dt1Ĥ1(t3)Ĥ1(t2)Ĥ1(t1) + · · · (67)

The operators H1(t) may not commute at different times, and so it is important to preserve
their time ordering.

This is called the “Dyson series” for the evolution operator. Note the nested time inte-
grals, preserving the ordering in the multiple time integrals of the temporal points where
the potential acts.

We can write this even more compactly by introducing the “time ordering operator”
T (A(t1)B(t2) . . . ). The time ordering operation takes the operators and evaluates them in
ascending order from the right; with the operator at earliest time farthest right, then the
next earliest one, and so on until the operator evaluated at the latest time sits at the far
left. Then we can think of the times ti in Eq. 67 as a set of dummy labels and write the
evolution operator as

Û(tf , ti) =
∞
∑

n=0

(

i

h̄

)n
1

n!

∫ tf

ti

dt1

∫ tf

ti

dt2 . . .

∫ tf

tn

dtnT (Ĥ1(t1)Ĥ1(t2) . . . Ĥ1(tn)) (68)

For useful insight, look at the second order term in the sum, and return to Schrödinger
representation. Consider a transition from one eigenstate of H0, |α〉, to another one, |β〉.
Inserting complete sets of states the transition amplitude becomes

Uβα =

(

− i

h̄

)2
∑

γ

∫ tf

ti

dt2

∫ t2

ti

dt1e
−iEβ(tf−ti)/h̄

×〈β|H1(t2)|γ〉 e−iEγ(t2−t1)/h̄ 〈γ|H1(t1)|α〉 e−iEα(t1−ti)/h̄.

(69)

Notice the structure (moving in from the right): the system begins in state |α〉 and the
time evolution is the trivial exponential of an energy eigenstate. Then the perturbation acts
at one time t1, driving the system into a superposition of eigenstates of H0, the |γ〉 states.
Lastly, the perturbation acts again at t2 to carry the system into |β〉.

B. The S-matrix

The S-matrix is defined as the limit

S = lim
t→∞

lim
t0→−∞

U(t, t0). (70)

We only have eigenstates of H0 so we always compute matrix elements of S between them,
〈β|S|α〉. We make a set of demands on S, and these demands constrain possible Hamilto-
nians. We set h̄ = 1 from here on.
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1. Unitarity

We want 〈β|S†S|α〉 = δαβ . This is the same thing as asking whether the evolution
operator is unitary. To satisfy this requirement, HI must be Hermitian. The proof is
simple. U(t0, t0) = Û(t0, t0) = 1. Then

i
d

dt
[Û(t, t0)

†Û(t, t0) = [−Û †Ĥ†
I ]Û + Û †[ĤIÛ ] = Û †[−Ĥ†

I + ĤI ]Û (71)

where we have used

dÛ

dt
= −iĤIÛ (72)

and its Hermitian conjugate. If ĤI is Hermitian, U †U is a constant and the constant is unity
from U(t0, t0) = Û(t0, t0) = 1.

2. Energy conservation

Is Sβα = 0 if Eα 6= Eβ? This is tricky! Recall H0 |α〉 = Eα |α〉, so we might consider

〈β|[H0, S]|α〉 = (Eβ −Eα)Sβα. (73)

Is this zero? If so, we have energy conservation. But there is a problem: S depends on HI

and generally [H0, HI ] 6= 0.

The escape is dirty. We have to (formally) adiabatically switch on and off HI at early
and late times, so that we can actually construct our “in” and “out” states. Then (writing
formally)

U(t, t0) = T exp(i(Ho +H
−λ|t|
I )t) (74)

so that

lim
t→±∞

[H0, U ] → 0. (75)

This says that we can only have energy conservation between the beginning and the end
of the reaction – the intermediate states can be anything. So much for being formal. The
algebra will take care of energy conservation for us, modulo technical problems associated
with squaring delta functions. For example

S
(1)
αβ = −i

∫ ∞

−∞
dteiEαt 〈α|HI|β〉 e−iEβt ∝ δ(Eα − Eβ). (76)

In fact, it will turn out, depending on how time ordered products are handled, that either

1. Energy isn’t conserved throughout the reaction, but all particles are on shell, p2 = m2

2. OR E is conserved, but intermediate state particles do not have p2 = m2.
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3. Momentum conservation

We want Sβα = 0 if
∑

i∈α pi 6= ∑

j∈β pj or more formally [P, S] = 0 where P is the

momentum operator. We will get this if [P,HI ] = 0. The momentum P is not only an
operator, it is the generator of translations x → x + a. Then S will be invariant under
space translations if H is, and momentum will be conserved. As you know, scattering in
an external field does not conserve momentum, but in that case there is no translation
invariance. We have to be careful about treating the momentum as a four vector and asking
for time translation invariance, because in Hamiltonian quantum mechanics, time is special:
it is “what we evolve in.”

4. Lorentz invariance

Consider a Lorentz transformation (some combination of boosts and rotations) parametrized
by a matrix Λ (with six perameters, three for rotations, three for boosts). We have observers
in two frames:

• O sees state |α〉

• O′ sees state |Λα〉

In analogy with rotation matrices, states are transformed by a unitary operator U(Λ),

|Λα〉 = U(Λ)|α〉 (77)

and operators must transform as

O → U(Λ)OU−1(Λ). (78)

That the transformation is unitary means that 〈α|β〉 = 〈Λα|Λβ〉 = δαβ . Different observers
must see S-matrices which do the same thing, so Sα,β = SΛα,Λβ, or

〈β|S|α〉 = 〈U(Λ)β|S|U(Λ)α〉
= 〈β|U(Λ)−1SU(Λ)|α〉 .

(79)

So, we want S = U−1SU or [S, U(Λ)] = 0.
This just looks like formalism, until we realize that the Hamiltonian perturbative S-

matrix treats time in a special way – there is the time ordered product. (Go back and look
at Eq. 68.) How can we solve this constraint? There is one possibility everyone knows (more
arcane versions, for particles with higher spin, or derivative interactions, are described in
Weinberg – keep it simple, now): First, write the perturbing Hamiltonian as an integral over
a Hamiltonian density

HI(t) →
∫

d3xH(x, t) (80)

where H is a Lorentz scalar. Being a scalar means that the transformation rule for H is

U(Λ)−1H(x)U(Λ) = H(Λ−1x). (81)
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(the argument changes but H does not change; Λ−1 because the order of the U ’s in Eq. 81
is reversed compared to Eq. 77.) Then the S-matrix is

S =
∑

n

(−i)n
n!

∫

d4x1 . . . d
4xnT (H(x1) . . .H(xn)). (82)

This looks promising: all the integrations, and H, are invariants. Unfortunately, we are not
out of the woods yet. The time ordering operator might not be Lorentz invariant. Do a
Lorentz transformation:

U−1SU =
∑

n

(−i)n
n!

∫

d4x1 . . . d
4xnTx(H(Λ−1x1) . . .H(Λ−1xn)). (83)

I wrote Tx to remind that the time ordering is in the frame of x, NOT in Λ−1x. To get this,
I have inserted unity as U(Λ)−1U(Λ) = 1 between the H’s in the time ordered product. Now
change variables, writing xi = Λyi. The integration measure is invariant, d4x = d4y so

U−1SU =
∑

n

(−i)n
n!

∫

d4y1 . . . d
4ynTx(H(y1) . . .H(yn)). (84)

Tx contains terms like

θ((Λ−1y1)
0 − (Λ−1y2)

0)H(y1)H(y2) + θ((Λ−1y2)
0 − (Λ−1y1)

0)H(y2)H(y1). (85)

Now there are two possibilities. If Λ does not change the ordering of times, this expression
will be the same in all frames. If the two points x1 and x2 are separated by a time-like
interval, the time ordering will not change, and S = U−1SU . We have Lorentz invariance.

However, if the two points are space-like separated, one can move from a frame where
t1 > t2 to one where t1 < t2. To maintain Lorentz invariance, we must be able to exchange
the order of the two H’s in the time ordering. To do this, we needH(y1)H(y2) = H(y2)H(y1),
or

[H(y1),H(y2)] = 0 for (y1 − y2)
2 < 0. (86)

We say “our Hamiltonian commutes outside the light cone.” Eqs. 80 and 86 are the require-
ments Lorentz invariance imposes on any quantum theory.

C. Relativistic spin-zero quantum fields

We want to consider scattering processes in perturbation theory from a state |Φk1,k2...〉 ∝
a†(k1)a

†(k2) . . . |0〉 to some final state |Φk′
1
,k′

2
...〉. We will build interactions Hamiltonians out

of fields and their derivatives, since that is all we have in a field theory. Our states are
created and destroyed by field operators. In position space, a potential scalar field operator
could be

φ(x) =

∫

d3p

(2π)3/2
√

2ω(p)
[a(p)eipx], (87)

where we temporarily assume that we only have a field annihilation operator in φ. The
factors of π and E(p) are a convenient choice (see the notes on conventions), and it lets us
quantize with [a(p), a†(p′)] = δ3(p− p′).

Now, we know we need two things:
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• H must be Hermitian, so H = H(φ, φ†)

• [H(y1),H(y2)] = 0 for space-like separation, (y1 − y2)
2 < 0.

Is Eq. 87 good enough to satisfy these requirements? If [φ(x), φ(y)†] = 0 for (x−y) space-like,
we’re good. Let’s see:

[φ(x), φ(y)†] =
1

(2π)3

∫

d3kd3k′
√

4E(k)E(k′)
e−i(kx−k

′y)[a(k), a†(k′)] (88)

(four dimensional dot products in the exponential, kx = E(k)x0 − ~k · ~x), or, from the
commutator [a(k), a†(k′)] = δ3(k − k′),

[φ(x), φ(y)†] ≡ ∆+(x− y) =
1

(2π)3

∫

d3k

2E(k)
e−ik(x−y). (89)

This is NOT an equal time commutator (x0 6= y0). It is a scalar function of (x − y). Let’s
evaluate it.

(a) x− y time-like: Pick a frame where ~x− ~y = 0, x0 − y0 ≡ x = ±
√

(x− y)2:

∆+(x) =
4π

2(2π)3

∫

k2dk√
k2 +m2

e∓ix
√
k2+m2

=
m

8πx
(N1(mx)± J1(mx))

(90)

using tables,and these are Bessel functions.
(b) x− y space-like. Work in a frame where t = 0, |x| =

√

−(x− y)2

∆+(x) =
1

(2π)3

∫

k2dkdΩ√
k2 +m2

ei
~k·~x

=
1

(2π)2

∫

k2dk√
k2 +m2

sin kx

kx

=
m

4π2x
K1(mx)

(91)

Tables again, and this is a Bessel function of imaginary argument,K1(mx) ∼
√

π/(2mx) exp(−mx).
Although we evaluates these expressions at particular points, we can slide the results up

and down the light cone by doing boosts. Eq. 90 is benign; the time ordering of time-like
separated events is preserved by Lorentz transformations. But Eq. 91 is bad news: it says
that [φ(x), φ(y)†] 6= 0 outside the light cone. Our guess for φ(x), Eq. 87, is inconsistent with
special relativity.

What to do? We need something additional to cancel ∆+ outside the light cone. Guess
number two:

φ(x) =

∫

d3p

(2π)3/2
√

2ω(p)
[a(p)eipx + ηa†c(k)e

−ipx], (92)

Now, if we assume that a and ac commute, and [ac(p), ac(p
′)†] = δ3(p− p′) the field commu-

tator is
[φ(x), φ(y)†] ∼ [a+ a†c, a

† + ac] = ∆+(x− y)− |η|2∆+(y − x). (93)
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Since ∆+ is an even function outside the light cone, we can achieve cancellation by setting
η = 1 (and you can absorb phases into ac if you want).

So (punch line) to satisfy Lorentz invariance, for every particle annihilated by φ there
must be another particle created by φ, and it has to have the same mass, so that the two
∆+ functions cancel. Hmm... what about its quantum numbers?

If some quantity is conserved, its charge operator commutes with the Hamiltonian,

[Q,H] = 0 (94)

or, if H is a product of fields,

[Q,
∏

i∈H
φi(x)] = 0. (95)

Now,

[Q, ai(k)] |ψ〉 = Q[ai(k) |ψ〉]− ai(k)Q |ψ〉
= (qψ − qi)ai |ψ〉 − qψai |ψ〉
= −qiai |ψ〉

(96)

or [Q, ai] = −qiai. Similarly, [Q, a†ci] = +qica
†
ic. The physical interpretation of Eq. 95 is that

we want the total charge annihilated at any interaction to be zero. This means that the
total charge never changes; it is conserved. To achieve this, it must be that

qi = −qic (97)

for all i. The particle annihilated by aic has to have the opposite charge as the particle
annihilated by a, in addition to having the same mass. This is the antiparticle of i. The
field operator creates antiparticles and annihilates particles with exactly the same strength.

Antiparticles do not exist because the Dirac equation has negative energy solutions.
Antiparticles exist to make the S-matrix Lorentz invariant.

Some comments:

• ac is called the “charge conjugate field.” (we will describe charge conjugation later
on).

• η = 1 for scalars, for convenience. We will discuss spinors (j = 1/2) later.

D. Example 1: φ4 field theory

For our first example let us set ac = a so φ is Hermitian. (This is called a “real scalar
field” in the literature.) Pick an interaction Hamiltonian density

H(x) =
g

4!
φ(x)4. (98)

Examples of such systems are the Higgs boson, or in statistical mechanics, the field theoretic
analog of the Ising model. Now calculate a scattering process k1 + k2 → k3+ k4. We can do
this in first order perturbation theory,

S(k1 + k2 → k3 + k4) = 1− i

∫

d4x 〈Φk3,k4|H(x)|Φk1,k2〉 (99)
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where
|Φk1,k2) =

√

2Ei2Eja(ki〉
†
a(kk)

† |0〉 . (100)

The “1” term does not contribute to scattering so we discard it.
Let us schematically evaluate the matrix element. Write the field operator four times

using Eq. 95, insert it in Eq. 99, and inside the thicket of math symbols you will find the
expression

1

4!
〈0|a(k3)a(k4)[aa + a†a][ab + a†b][ac + a†c][ad + a†d]a(k1)

†a(k2)
†|0〉 (101)

Assume all the ka . . . kd are unequal (the equal ones form a set of measure zero). The only
non-vanishing terms are those for which two of the a’s, and two of the a†’s, in the brackets,
contract against the in and out states. Make a table: there are 4 ways to contract ad or a†d
against an a(k) or an a(k)†. This leaves 3 ways to contract the ac or a

†
c, two ways for the

ab (etc) and one way is left. This gives an overall 4! combinitorial factor. Each contraction
has the same weight. So we are left with

S(k1 + k2 → k3 + k4) = −ig
∫

d4x

(2π)6
ei(k1+k2−k3−k4)x

√
2E12E22E32E4√
2E12E22E32E4

(102)

or

S(k1 + k2 → k3 + k4) = −ig (2π)
4

(2π)6
δ4(k1 + k2 − k3 − k4) (103)

If you have read the notes on “Conventions for fields and scattering amplitudes,” you
know what comes next. With S = 1 + T , we can strip off the delta-function and the
factors of 2π, leaving the “effective T-matrix T” or “invariant amplitude M” to plug into
the formula for the cross section. I’ll recopy it, to save you time:

dσ =
1

4E1E2vrel
|M |2(2π)4δ4(

∑

kf −
∑

ki)

nf
∏

j=1

d3kj
(2π)32E(kj)

. (104)

In this case, the invariant amplitude is very simple,

M = −ig. (105)

What is the cross section? We have to integrate the momenta over the delta function. We
can get this with (yet) another trick: writing E = p0 we convert the three dimensional
integral to a four dimensional one

d3p

2E
= d4pδ+(p2 −m2) (106)

The δ+ means to take only the positive square root. Then the phase space integral is

d4k3d
4k4δ

4(k3+k4−k1−k2)δ
+(k23 −m2)δ+(k24 −m2) =

d3k3
2E3

δ+((k1+k2−k3)
2−m2) (107)

Let’s evaluate this in the center of mass frame:

k1 = (E,~k)

k2 = (E,−~k)
k3 = (E3, ~k)

(108)
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FIG. 1. Lowest order scattering Feynman diagram for H = gφ4/4!.

where k23 +m2 = E2
3 . The delta function is δ((k1 + k2)

2 − 2(k1 + k2) · k3) = δ(s − 4EE3)
where s is called a “Mandelstam invariant’: it is a generalization of the squared center of
mass energy, s = (k1 + k2)

2 = 4E2
CM . Incidentally, the relative velocity is vrel = 2k/E.

Introducing the angular dependence through d3k = k2dkdΩ, a few steps of algebra give

dσ

dΩ
=

g2

8π2s
(109)

(isotropic scattering) and the total cross section is

σ =
g2

2πs
. (110)
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Many ingredients in this calculation will be repeated over and over. To keep track of these
ingredients, it is convenient to introduce a diagrammatic language – Feynman diagrams and
Feynman rules. Our little exercise gives us some proto-rules:

1) For this theory, each order in perturbation theory contributes a weight −ig/4!. The
−i is from the Dyson series, the 4! from the g/4! in H. We display this weight as a vertex
with four lines meeting. Note that momentum is conserved at the vertex.

2) Each external line (incoming or outgoing particle) contributes a weight 1 to M or

1/((2π)3
√

2E(k) to the T-matrix.
3) There is an overall combinitorial factor of 4! contracting field in H against those in

the in - and out - states
The associated diagram is shown in Fig. 1. Feynman diagrams are not cartoons! Each

line or vertex refers to some specific mathematical function.

E. Example 2: Discovering the propagator

For our next example, imagine three species of scalar fields A, B, and C, none of which
is its own antiparticle. Let

H(x) = g[A(x)B(x)C(x) + h.c.] (111)

Let’s calculate BC → BC scattering. We need second order perturbation theory.

S(kb + kc → k′b + k′c) =
(−i)2
2!

∫

d4xd4y 〈Φk′
b
,k′c|T (H(x)H(y))|Φkb,kc〉 (112)

The two vertices are at space-time points x and y. At one of these points, b′ and c′ are
created, and at the other point b and c are annihilated. Each choice gives the same weight
to S, so pick one of them and cancel the 2!. As before, we have to evaluate

〈0|b(k′b)c(k′c){T ((a†1 + ac1)(b
†
2 + bc2)(c

†
3 + cc3)(a4 + a†c4)(b5 + b†c5)(c6 + c†c6))}b(kb)†c(kc)†|0〉 .

(113)
b2 annihilates b(kb)

†, c3 annihilates c(kc)
†, and only

〈0|T ((a†1 + ac1)(a4 + a†c4)|0〉 (114)

is left. In full gory detail we have

S = −g2
∫

d4xd4y
e−ikby

(2π)3/2
e−ikcy

(2π)3/2
eik

′

b
x

(2π)3/2
eik

′

cx

(2π)3/2
〈0|T (A(x)†A(y))|0〉 (115)

The quantity 〈0|T (A(x)†A(y))|0〉 is called the Propagator. Anticipating the calculation, it
is a function of (x− y). We can perform the x and y integrals by shifting variables to x and
x− y. The x integral gives a delta function leaving

S = −g2 (2π)
4δ4(kb′ + kc′ − kb − kc)

(2π)6
[−i∆F (kb + kc)] (116)

where

−i∆F (k) =

∫

d4zeikz 〈0|T (A(z)†, A(0))|0〉 . (117)
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Of course,
M = (−ig)2[−i∆F (kb + kc)]. (118)

Again we can draw a picture. See Fig. 2. And also note that x0 is not necessarily later (or
earlier) than y0.

We have to calculate the propagator. We begin with the coordinate space version

−i∆F (x− y) = θ(x0 − y0) 〈0|A(x)†A(y)|0〉+ θ(y0 − x0) 〈0|A(y)A(x)†|0〉 (119)

The first term is

θ(x0 − y0)

(2π)3

∫

d3kd3k′
√

4E(k)E(k′)
〈0|[a(k)†eikx + ac(k)e

−ikx][a(k′)e−ik
′y + ac(k

′)†eik
′y]|0〉 . (120)

The aca
†
c term is the only non-vanishing one, and k = k′ is needed, so the first term collapses

to
θ(x0 − y0)

(2π)3

∫

d3k

(2π)32E(k)
e−ik(x−y). (121)

The second term is similar. The coordinate space propagator is

−i∆F (x− y) =

∫

d3k

(2π)32E(k)
[θ(x0 − y0)e−ik(x−y) + θ(y0 − x0)eik(x−y)] (122)

Let’s write this as a four dimensional Fourier transform. We use the integral expression with
a convergence factor

∫ ∞

−∞
dteiωtθ(t) =

∫ ∞

0

dteiωte−ǫt =
i

ω + iǫ
(123)

and so

θ(t) =
i

2π

∫ ∞

−∞
dω

e−iωt

ω + iǫ
(124)

Convert this to a contour integral and close the contour in the upper half plane if t < 0, in
the lower half plane if t > 0, pick up the residue, and it checks.

Then (here note the (t, ~x) and define E(k) =
√
k2 +m2)

−i∆F (x) =
i

(2π)4

∫

d3kdω

2E(k)(ω + iǫ)
[e−iE(k)t+i~k·~x−iωt + eiE(k)t−i~k·~x+iωt] (125)

The Fourier transform is

−i∆F (q) =

∫

d4x(−i∆F (x))e
iqx

= i

∫

d4x

(2π)4
d3kdω

2E(k)(ω + iǫ)
[e−iE(k)t+i~k·~x−iωt + eiE(k)t−i~k·~x+iωt]eiqx

(126)

and so ~q = ±~k from the ~x integral (the sign doesn’t matter). The
∫

dx0 gives a 2πδ(q0 −
ω − E(k)) for the first term and a 2πδ(q0 + ω + E(k)) for the second one. The expression
collapses to

−i∆F (q) = i

∫

dω

2E(q)(ω + iǫ)
[δ(ω + E(q)− q0) + δ(ω + E(q) + q0)] (127)
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FIG. 2. Lowest order scattering Feynman diagram for BC → BC with H = ABC + h.c.

and so we can write the result in two equivalent ways: First, separate the terms:

−i∆F (q) =
i

2E(q)
[

1

q0 −E(q) + iǫ
+

1

−q0 − E(q) + iǫ
] (128)

and second, combine them,

−i∆F (q) =
i

q2 −m2 + iǫ
. (129)

This is a very important object, the propagator for a scalar field.
There is an associate Feynman diagram, Fig. 2.
We are not going to use Eq. 128 any more, but let’s look at it before moving on. The

first term is the antiparticle piece, where the time ordering is that first the antiparticle is
produced, and later it annihilates to produce the outgoing BC pair. The second term is
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the opposite time order, emission preceded absorption. The energy denominators are the
ones in the “usual” quantum mechanical second-order perturbation theory formula for the
T-matrix

T =
∑

I

〈f |V |I〉 〈I|V |i〉
Ei −EI

. (130)

This you can see if you write ~q = ~kb + ~kc = −pa, q0 = Eb + Ec, and change notation so
Ea = E(q). Then

M ∝ 0g2[
i

2Ea
{ 1

Eb + Ec − Ea + iǫ
+

1

−Ea − Eb − Ec + iǫ
}] (131)

The second term is trickier until you realize that the initial energy is Eb + Ec and the
intermediate energy EI = Eb + Ec + Eb′ + Ec′ + Ea so the denominator is also the correct
energy difference.

In nonrelativistic situations, the intermediate states from the different time orderings are
just different, and you can’t use all our tricks to get a beautiful answer, like Eq. 129. This is
all people had, before Feynman (1948-ish). How would you like to do quantum field theory
this way? It was horrible... Imagine higher order calculations! Lorentz invariance is hidden,
too. There is an old book, Heitler, “The quantum theory of radiation,” take a look at it, on
a rainy day.

Now go back to the S-matrix

S(kb + kc → k′b + k′c) =
(−i)2
2!

∫

d4xd4y
e−i(kb+kc)ye−i(kb′+kc′)x

(2π)6
[−i∆F (x− y)]

= −g2 (2π)
4

(2π)6
δ4(kb′ + kc′ − kb − kc)

i

(kb′ + kc′)2 −m2
a + iǫ

] (132)

Here, ka = kb + kc = kb′ + kc′ so four-momentum is conserved at each vertex, but k2a =
(kb′ + kc′)

2 6= m2
a. We say “the intermediate particle is off mass shell.”

Finally, what’s the cross section? In a CM frame, (kb + kc)
2 = E2

CM and

dσ

dΩ
∼ | 1

E2
CM −m2

a

|2 (133)

This diverges at ECM = ma. This is the mark of a resonance, when the CM energy is exactly
right to produce the intermediate particle on shell, the cross section becomes very large.
The divergence is not physical, it is an artifact of working to lowest order the perturbative
expansion, where the resonance has zero width. The resonance is the physics!

F. Example 3: Another amplitude

For our next example, keepH = g(ABC+A†B†C†), but compute the reaction BC̄ → BC̄.

S = −g2
∫ ∫

d4xd4ye−(kb−kc′)xe−(kb′−kc)y 〈0|T (A(x)†A(y))|0〉 (134)

This gives

M = −g2 i

(kb − kc′)2 −m2
a + iǫ

(135)
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FIG. 3. Lowest order scattering Feynman diagram for BC̄ → BC̄ with H = ABC + h.c.

Let’s write the S-matrix a little more suggestively,

S = −g2
∫ ∫

d4xd4ye−(kb−kc′)ixe−i(kb′−kc)y
∫

d4q

(2π)4
i

q2 −m2
a + iǫ

eiq(x−y)

= −g2 1

(2π)6

∫

d4q

(2π)4
[(2π)4δ4(kb − kc′ + q)][(2π4)δ4(kb′ − kc + q)]

i

(kb − kc′)2 −m2
a + iǫ

(136)

Writing this expression tells us that we have conservation of four-momentum at each vertex.
We also integrate over all internal momenta (in this case, just q). One of the delta-functions
will give overall four momentum conservation when all the integrals are done.

The associated Feynman diagram is shown in Fig. 3.
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G. Wick’s theorem

Wick’s theorem is used to reduce the nasty time ordered products of field operators into
simple expressions, by recasting the time ordered product of many fields into a product
of time ordered products of two fields (which are just propagators). Let me describe it
for bosons; fermions have some permutation factors (no surprise). Write each field in its
creation and annihilation parts, φ = φ+ + φ− where 〈0|φ+ = φ− |0〉 = 0. Recall the normal
ordering operator,

: φiφj := φ+
i φ

+
j + φ+

i φ
−
j + φ+

j φ
−
i + φ−

i φ
−
j . (137)

We can write the time ordered product of two fields as the normal ordered product plus
a constant C, since the rearrangements needed to go from one to the other just involve
commutators of fields.

T (φ1φ2) =: φ1φ2 : +C. (138)

Now take the vacuum expectation value of this expression. The vacuum expectation value
of the normal ordered product vanishes, so

〈0|T (φ1φ2)|0〉 = 0 + C. (139)

and so we have

T (φ1φ2) =: φ1φ2 : + 〈0|T (φ1φ2)|0〉 . (140)

This is for two fields. Wick’s theorem generalizes this to n fields. For even n, it says

T (φ1φ2 . . . φn) = : φ1φ2 . . . φn :

+ 〈0|T (φ1φ2)|0〉 : φ3 . . . φn : + order n− 2 permutations

+
∑

〈0|T (φiφj)|0〉 〈0|T (φkφl)|0〉 : φ . . . φ :

+ . . .

+
∑

〈0|T (φiφj)|0〉 〈0|T (φkφl)|0〉 . . . 〈0|T (φmφn)|0〉
(141)

The proof is not so interesting. It is done by induction, and it is in Bjorken and Drell,
“Relativistic quantum fields” (and probably other books). But the formula is quite useful.
Return to H = ABC + h.c. where we need

〈B′C̄ ′|T (H(x)H(y)|BC̄〉 = 〈B′C̄| { : A†
iB

†
1C

†
1A2B2C2 :

+ 〈0|T (A†
1A2|0〉 : B†

1C
†
1B2C2 :

+ 〈0|T (B†
1B2|0〉 : A†

1C
†
1A2C2 :

+ . . .

} |BC̄〉
(142)

Only the 〈B′C̄| : B†
1C

†
1B2C2 : |BC̄〉 term has the right combination of operators to annihilate

BC̄ and create B′C̄ ′. Everything else gives zero.
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FIG. 4. Higher order scattering processes with H = gφ4/4!.

H. A glance at higher orders

We return to

H =
g

4!
φ4(x) (143)

where φ is real, so a = ac. Let us look at the order g2 contributions to scatttering φ1+φ2 →
φ3 + φ4.

S(2) =
1

2!

(−ig
4!

)2 ∫

d4xd4y 〈Φ34|T (φ(x)4φ(x)4)|Φ12〉 (144)
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When we use Wick’s theorem to clean this up, we want to pull off terms with normal
products of four fields.

T (φ(x)4φ(x)4) =
∑

ijkl

〈0|T (φjφk)||0〉 〈0|T (φkφl)|0〉 : φmφnφoφp : (145)

Four of (ijklmnop) are at x, the other four are at y.
We have three generic kinds of terms (see Fig. 4):

• a) i = k = x, j = l = y and permutations

• b) i = x, j = y, k = l = x OR y

• c) In addition, we may have i = j = x, k = l = y. These are called “disconnected
diagrams.” They don’t contribute to scattering (they won’t be proportional to δ4(k1+
k2 − k3 − k4). We will neglect them.

There are three “type (a)” graphs. They all have a common combinitorial factor C, which
we will ignore for now. For eaxmple,

Sa1a = C(−ig)2
∫

d4q1
(2π)4

d4q2
(2π)4

(2π)4δ4(q1 + q2 − k1 − k3)

×(2π)4δ4(q1 + q2 − k2 − k4)×
−i

q21 −m2 + iǫ
× −i
q22 −m2 + iǫ

(146)

so that the invariant amplitude is

Ma1 = −Cg2
∫

d4q1
(2π)4

[
−i

q21 −m2 + iǫ
][

−i
(k1 − k3 − q1)2 −m2 + iǫ

]. (147)

This is called a graph with a “loop integral.” The momentum q1 is unconstrained and must
be integrated over.

There are four type (b) graphs.

(2π)4δ4(k1 + k2 − k3 − k4)Mb1 ∝ (−ig)2
∫

d4q1
(2π)4

d4q2
(2π)4

(2π)4δ4(q2 − k2)δ
4(k3 + k4 − q2 − k1)

× −i
q21 −m2 + iǫ

× −i
q22 −m2 + iǫ

(148)

This says that

Mb1 ∝ (−ig)2 −i
k22 −m2 + iǫ

∫

d4q1
(2π)4

−i
q21 −m2 + iǫ

. (149)

This is getting mechanical, but the result is worrisome: the integral is divergent!

∫

|q|<Λ

d4q1
(2π)4

−i
q21 −m2 + iǫ

∝
∫ Λ d3q

q2
∝ Λ2 (150)

where I have put in a cutoff to make sense of the expression.
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This is our first encounter with the “divergences” of quantum field theory. They arise
from the short distance sector of the theory. This is most easily seen by working in coordinate
space and keeping all the propagators,

M(x1, x2, x3, x4) ∝ (−ig)2
∫

d4xd4y[−i∆F (x1 − x)][−i∆F (x2 − x)][−i∆F (x3 − x)]

[−i∆F (x− y)][−i∆F (y − x4)][−i∆F (y − y)]

(151)

The divergence comes from the last term: emission and absorption at the same point,

−i∆F (x = 0) =

∫

d4q1
(2π)4

−i
q21 −m2 + iǫ

. (152)

This contribution is present even though we might only be interested in scattering (or other
processes) taking place at very low energies, or at long distances. To proceed further at this
point, we have to do several things:

1. Enumerate all possible divergent contributions: are there a finite number, or an infinite
number? It turns out that in φ4 theory, only two point functions and four point
functions contain divergences.

2. Regulate the divergences: do something to make them well defined. In the example, I
cut off the momentum integral, restricting |q| < Λ.

3. Do calculations in the regularized theory and make sense of them.

This is a project for later in the semester.

I. Feynman rules

You may have noticed a certain robotic similarity in all our examples. All our manipula-
tions can be absorbed into a set of rules for constructing invariant amplitudes, in terms of
Feynman diagrams.

Here are the Feynman rules for scalar field theory:
Given an interaction Hamiltonian density which is a product of fields (for example H =

gφ4/4!)
1) Draw all connected diagrams allowed by H. For each vertex there is a factor −i, a

factor of the coupling constant, and there is an overall 1/n! from the Dyson series. Each
diagram will typically have some associated combinitorial factor.

2) Each internal boson carrying a momentum q contributes a −i∆F (x− y) in coordinate
space, or

∫

d4q

(2π)4
i

q2 −m2 + iǫ
(153)

in momentum space.
3) Each vertex counts either (orient all the momenta in or out for this)

(2π)4δ4(
∑

q) (154)
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or
∫

d4xei
∑
qx (155)

As an alternative to rules 2 and 3,
2’-3’) Conserve momentum at every vertex, integrate

∫

d4q

(2π)4
(156)

over all unconstrained momenta
And compute the invariant amplitude from the resulting expression by snipping off delta

functions and 2π’s associated with the incoming and outgoing particles

M
(2π)4

(2π)3(ni+nf )/2
δ4(

∑

pout −
∑

pin) →M (157)

The differential cross section is

dσ =
1

4E1E2vrel
|M |2(2π)4δ4(

∑

kf −
∑

ki)

nf
∏

j=1

d3kj
(2π)32E(kj)

× 1

nf !
(158)

The new 1/nf ! is a counting factor for identical particles, basically Bose statistics. It is
discussed in Bjorken and Drell, “Relativistic Quantum Mechanics,” p. 136, or in Zee, a hint
on p. 54.

J. Conclusion

This chapter has been a terse but fairly complete introduction to quantum field theory
based on Hamiltonians. We only looked at scalar particles. The interesting (and more
physical, at least before 2012) quantum field theories contain fermions and gauge fields.
Perturbation theory for such systems is very similar to what we have done: there will be
vertices and propagators, which only differ in detail (important details, true) from what we
have found.

However, before we push on to these systems, I want to go back to the drawing board. You
recall, that there are two ways of introducing quantum mechanics, either with Hamiltonians,
or with the path integral. Path integrals are not so useful for practical problems in single
particle quantum mechanics, but they really come into their own when they are applied to
quantum field theories. We have to become comfortable with them. That is the subject of
the next chapter.

III. CONCLUSION FOR ALL THE NOTES TO THIS POINT

References: Late in the class I discovered David Tong’s lectures [1], which are close to
what I taught.

Otherwise I had a hard time finding a book that does things exactly like I have presented
them here. I think there are two reasons for this:
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First, quantum field theory can be developed right from the start using path integrals.
That is the approach of Srednicki and of Zee (mostly). We are going to do path integrals
next. I started with Hamiltonians because I thought it was closer to what you already knew
– nonrelativistic quantum mechanics.

Second, to actually do a computation there are a lot of things you have to know all at
once. Picking what to teach first is a judgement call.

Having said that, there are bits of the following books which come close to these lectures:
Schwartz 7.2-7.4, Srednicki Ch. 3, Peskin and Schroeder Sec. 2.4. Weinberg Volume 1,
chapter 6 parallels a lot of what I did in these notes. I was surprised to see that Sidney
Coleman’s lecture notes [2] basically parallel what I am doing. They are different because
his audience was Harvard theoretical physics graduate students, and because he was much
more creative than I am.

IV. GAUSSIAN INTEGRALS WITH ZERO EIGENVALUES

Gauge redundancy appears in the path integral formulation of a gauge theory through
“flat directions” in the functional integral.

Consider the naive formula for the partition function for a gauge theory

Z =

∫

DAµ exp(iS) (159)

where dA is a shorthand for integration over the vector potential,

∫

DA =

∫

∏

x,µ

dA(x)µ (160)

and the action is

S = −1

4

∫

d4xFµνF
µν = −1

4

∫

d4x(∂µAν − ∂νAµ)(∂
µAν − ∂νAµ). (161)

Go to p-space, (incorrect 2π’s)

Aµ(x) =

∫

d4peipxAµ(p) (162)

and the action becomes

S =
1

4

∫

d4p(pµAν(−p)− pνAµ(−p))(pµAν(p)− pνAµ(p))

=
1

2

∫

d4pAµ(−p)Aν(p)[gµνp2 − pµpν ].

(163)

The propagator is the inverse of the object in brackets, a 4 × 4 matrix. Unfortunately, it
has zero eigenvalues for all values of p and so it is not invertable. (As an example, write the
matrix out for pµ = (p, 0, 0, 0).) The naive formula has issues.
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Let’s consider, more generally, a Gaussian integral

G(A) =

∫ ∞

−∞
dx1 . . . dxN exp(−xTAx) = 1√

detA
(164)

(again neglecting factors of π). This integral is well defined as long as the determinant does
not vanish. If the determinant does vanish, we have a problem – the integral blows up.

We can see the origin of this blowup if we change variables to a basis where A is diagonal.
If A is a real, symmetric N ×N matrix, then we can rotate x with an orthogonal matrix R,

y = Rx (165)

and
N
∏

i=1

dxi =
N
∏

i=1

dyi (166)

so

G(A) =

∫

∏

dy exp(−xTRTARx)

=

∫

∏

dyi exp(−y2i di)

=

√

π
∏

i di

(167)

We have problems (we get an infinity) of one of the di’s is zero. In that case, it comes from
∫ ∞

−∞
dy = ∞. (168)

Can we get a sensible answer for the integral even when the determinant vanishes? If we
can divide out the culprit infinite integral, the answer is Yes. How can we do this? Suppose
we have n zero eigenvalues. Let’s define the restricted Gaussian integral

GR(A) =

∫

dy1 . . . dyN−n exp(−xTAx). (169)

This is awkward, since we have to know the y’s before hand. Instead, define new variables
yN−n+1 to yN and write

GR(A) =

∫

dy1 . . . dyN−ndyN−n+1 . . . dyNδ(yN−n+1) . . . δ(yN) exp(−xTAx). (170)

We can now change variables back from y to x,

dy1 . . . dyN = dx1 . . . dxNdet|
∂y

∂x
| (171)

so that

GR(A) =

∫ N
∏

i=1

dxi{det|
∂y

∂x
|

N
∏

j=N−n+1

δ(yj)} exp(−xTAx). (172)

The extra factors, the terms inside the curly brackets, restrict the integration from its original
N−dimensional space to an N − n dimensional one. Of course, one must cleverly choose
the y’s to restrict the integration measure, or else the Jacobian det|∂y/∂x| will be singular.
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A. More about gauge theories

I’ve just described the mechanical construction we will follow, to construct the path
integral for the photon. But we can do better. Let’s try to derive some more general
formulas for gauge theories, and then really look closely at gauge invariance. I will restrict
all my discussions to the case of ordinary electrodynamics, but the language will be general
enough to consider more complicated situations (like non-Abelian gauge symmetry).

Let’s begin by looking at constant functions in a gauge theory. They actually don’t exist!
the closest one can come to a constant function φ is to define a function whose covariant
derivative is zero,

Dµφ = (∂µ + iAµ)φ = 0 (173)

(Note I have set q = 1 or redefined Aµ = qAµ.) Now

φ(x+ dx) = φ(x) + dxµ∂µφ (174)

which is
φ(x+ dx) = φ(x)− idxµAµφ(x) (175)

if Dµφ = 0, and this is

φ(x+ dx) = exp(−idxµAµ(x))φ(x) +O(dx2) (176)

Under a local gauge transformation φ(x) → exp(−iΛ(x))φ(x) ≡ V (x)φ(x). The expo-
nential in Eq. 176 becomes

exp(idxµAµ(x)) → exp(idxµ(Aµ(x) + ∂µΛ(x)))

= exp(−i(Λ(x+ dx) + Aµ(x)dx
µ − Λ(x)))

= V (x+ dx) exp(−idxµAµ(x))V (x)† (177)

with a slight overkill of notation, V † = V ∗ here – it’s just a phase rotation. (The more
complicated notation allows an immediate generalization to non-Abelian gauge theories like
QCD or the Standard Model.)

Note that exp(−idxµAµ(x)) transforms by rotations V and V † “at its ends.”
Now iterate Eq. 176 along any curve P from initial point x to final point y:

φ(y) = exp(−i
∫ y

P,x

dx ·Aφ(x)). (178)

As φ(x) is carried (“parallel transported,” is the jargon borrowed from General Relativity)
from point x to point y along a path P , it picks up a phase, the line integral of A along
the path. Calling φ(y) = U(y, x)φ(x), we notice that under a gauge transformation φ(y)′ =
V (y)φ(y) or

φ(y)′ = V (y)U(y, x)V †(x)V (x)φ(x) = U(y, x)′φ(x)′. (179)

U(x, y) is often called a “Wilson line,” named after Ken Wilson. Under a gauge transfor-
mation, it rotates with a phase factor at each end. Notice that this expression implies that
U(x, x), a “Wilson loop,” is gauge invariant. (For a non-Abelian gauge theory, φ(x) would
be a column vector and U would become a matrix; the gauge invariant object is Tr U(x, x).)

Consider next an infinitesimal path of length a in the µ̂ direction, connecting the point
x− aµ̂ to x:

exp(−iaAµ(x)′) = V (x) exp(−iaAµ(x))V †(x− aµ̂) (180)
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or, expanding,

1− iaAµ(x)
′ = V (x)[1− iaAµ(x)][V (x)† − a∂µV

†]

= 1− iaV ∂µV
† − aV AV † + . . .

(181)

or
A(x)′µ = V (x)Aµ(x)V (x)

† − iV (x)∂µV (x)†. (182)

This slightly complicated language comes into its own when considering non-Abelian
gauge theories (where φ(x) becomes a column vector and U becomes a matrix).

Now let’s focus on the gauge transformation itself

V (x) = exp iω(x). (183)

The V ’s are the elements of an Abelian group G parametrized by the ω’s. There is an
identity element, ω = 0 or V = 1, an inverse, V V † = 1, and a closure relation

V (x)′′ = V (x)′V (x) ∈ G. (184)

Mathematicians call this G the group U(1) – the group of unitary transformations in one
dimension. The group is “compact:” the size of all the elements ||V || = 1. Notice that the
U(y, x)’s are elements of G, too:

U(x, x′) = U(x, x′′)U(x′′, x) ∈ G. (185)

Now, remember all our issues with
∫∞
−∞ dA? If we had compact variables, we would not

encounter such integrals.
All this discussion suggests that we should define gauge theories not directly in terms of

the Aµ’s, but in terms of the U ’s. We do this in the following (roundabout) way:
First, replace the four dimensional space time continuum by a four dimensional lattice

of points, with a lattice spacing a. (This probably only makes sense for an Euclidean path
integral.) Matter fields (fermions and bosons) are replaced by fields defined on the sites
of the lattice, ψ(x) → ψ(xi). Gauge transformations are also defined only on the sites (as
V (xi)).

Gauge information is transmitted by the U(x, y)’s. The minimal size U will span one
lattice site

U(x+ aµ̂, x) ≡ Uµ(x) (186)

and it transforms as

U(x+ aµ̂, x)′ = V (x+ aµ̂)U(x+ aµ̂, x)V (x)† (187)

Notice U(x, x+ aµ̂) ≡ Uµ(x)
†. Thus, the Uµ’s live on the links of the lattice.

Third, we define the integration measure for the path integral as an integration over all the
allowed values of the U ’s. This is called the “Haar measure” (or “invariant integration over
the group elements”) and is denoted as dU . It is invariant in the sense that if U ′ = V UV †,
then dU ′ = dU . If G is compact, the integration is over a finite range.

Two examples: in our case, where G = U(1), we can parametrize U = exp(iθ) and
∫

dU =

∫ π

−π
dθ, (188)
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or geometrically, Haar measure is a line integral around a unit radius circle. Another simple
group is SU(2). Any element of SU(2) can be parametrized in terms of the Pauli matrices
and four real numbers,

U = U01 + i~U · ~σ (189)

in terms of which
∫

dU =

∫ 3
∏

i=0

dUδ(1−
∑

i

U2
i ). (190)

Then the gauge part of the (Minkowski space) partition function is defined as

Z =

∫

∏

i,µ

dUµ(i) exp iS(U) (191)

The Euclidean path integral would have no i in the exponent.
Now, what could S(U) be? It must be gauge invariant, and so the most general S will

be a sum of closed paths of U ’s, multiplied by a set of arbitrary coefficients,

S(U) =
∑

x

∑

path j

UPj
(x, x)cPj

(192)

where UPj
= U(x, x1)U(x1, x2) . . . U(xn, x).

The theory ought to have an interesting continuum limit, that is, if we take the lattice
spacing a to zero, the action ought to reduce to something proportional to

S =

∫

d4xFµνF
µν . (193)

Actually, that is easy to achieve. Any closed path will reduce to this form. Consider the
smallest one, a path around a 1× 1 plaquette,

U = exp(−a[Aµ(x) + Aν(x+ aµ̂)− Aµ(x+ aν̂)−Aν(x)]) (194)

Write this as exp(i∆) and Taylor expand ∆ for small a:

∆ = Aµ(x) + (Aν(x) + a∂µAν(x))− (Aµ(x) + a∂νAµ(x))− Aν(x)

= a(∂µAν − ∂νAµ).

(195)

Then

U = i+ ia2Fµν −
a4

2
F 2
µν + . . . . (196)

Clearly
∑

j

(U(j) + U †(j)− 2) = −(a4
∑

j

)F 2
µν = −

∫

d4xF 2
µν . (197)

We could just take the action to be the left hand side of this expression, a sum over all
the “plaquettes” of U ’s. This looks like stupendous overkill, but notice that the compact
measure precludes infinities a la

∫ ∞

−∞
dx exp(−0 × x2). (198)
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We could use this formalism to study the nonperturbative behavior of gauge theories. In
fact, that is what people like me do for a living. Instead, let’s use it to study gauge theories
in perturbation theory. That’s easy here. The Haar measure for a U(1) gauge theory is, if
U = exp(iθ),

∫

dU =

∫ π

−π
dθ (199)

so if we take U = exp(iaA),

dU =

∫ π

−π
d(aA) → lim

a→0

∫ π/a

−π/a
dAµ →

∫ ∞

∞
dAµ (200)

and we are back to integration over all the values of a classical field (just like we had for
scalar fields).

Unfortunately, this is the integral which had the flat directions.

B. A well behaved path integral

The resolution to our difficulties is to eliminate the flat directions from the functional
integral. This is done precisely as was discussed in Sec. IV, specifically in Eq. 172. Gauge
fixing involves a constraint g(A) = 0 for some function g. Recall the gauge transformation
formula Eq. 182,

AVµ = V Aµ(x)V
† − iV ∂µV

† (201)

and consider the quantity

∆−1
g (Aµ) =

∫

DV δ[g(AVµ )] (202)

that is, integrate the gauge fixing δ−function over all the gauge transformations V at every
site. Then involve the identity

1 = ∆g(Aµ)

∫

DV δ[g(AVµ )]. (203)

Our partition function is

Z(J) =

∫

DAµ{∆g(Aµ)

∫

DV δ[g(AVµ )]} exp(−iS(J)). (204)

The terms in the curly brackets are our “1”. Of course S(J) = S +
∫

AµJ
µ for use in

generating Green’s functions.
Now notice that ∆g(Aµ) is, in fact, gauge invariant:

∆−1
g (AV

′

µ ) =

∫

DV δ[g(AV
′V

µ )], (205)

but DV = D(V ′V ) (Haar measure at work) so

∆−1
g (AV

′

µ ) =

∫

DV ′′δ[g(AV
′′

µ )] = ∆−1
g (Aµ). (206)
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This means that we can perform a gauge transformation in Z(J)

Z(J) =

∫

dV

∫

DAµ∆g(Aµ)δ[g(A)] exp(−iS(J)). (207)

The
∫

dV just factors out of the expression. We can drop it. What does the rest of the
expression mean? Integrate over all the Aµ’s, subject to the gauge fixing constraint δ(g),
and with the Jacobian ∆g(Aµ).

All we have to do is groom this expression to make it useful. We start (improbably) by
changing variables from V to g itself,

DV = Dgdet(
δV

δg
) (208)

so that

∆−1
g (A) =

∫

Dgdet(
δV

δg
)δ(g) = det(

δV

δg
)g=0 (209)

or

∆g(A) = det(
δg

δV
)g=0. (210)

If we parametrize V = exp(iω), this is

∆g(A) = det(
δg

δω
)g=0. (211)

(Be patient, an example is coming.)
We are nearly done. It would be very useful to get everything into the exponential. Let’s

pick a gauge choice, with a free parameter α, which will do that for us:

g̃(A) =

∫

Dc(x)δ(g − c) exp(− i

2α

∫

d4x(C(x)2)

= exp(− i

2α

∫

d4x(g(A)2).

(212)

For example, g(A) = ∂µAµ corresponds to

g̃(A) = exp(− i

2α

∫

d4x(∂µA
µ)(∂νA

ν). (213)

Finally, if (this is a very big IF) det( δg
δω
) does not depend on A, it also factors out of

the functional integral and we can drop it. Again, an example: g(A) = ∂µAµ. Its gauge
transformation is

g(AV (x)) = ∂µ(A
µ + ∂µω) (214)

so
δg

δω
= δ4(x− y)✷ (215)

What is this? Pick some boundary conditions, solve ✷φ = λφ (✷ is the d’Alembertian,
∂µ∂µ) and then

det
δg

δω
=

∏

j

λj . (216)
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Even more explicitly,

det
δg

δω
= det

∑

n,m

∫

d4xd4y φ†
n(x)δ

4(x− y)✷φ(y) (217)

which is detδnmλn. End of the example. The point is, det δg
δω

has no A dependence, so we
can factor it out and forget about it.

Coulomb gauge is similar. The gauge fixing term is δ(~∇ · ~A)det∇2.
This was a mess. I dragged you through it, because there are cases where the factorization

does not occur, and the determinant remains as part of the functional integral. Gauge choices
for non-Abelian gauge theories pick up extra terms. Even for QED, it is possible to invent
nonlinear gauge choices. In the literature, they are called “ghosts.” We will not discuss
them any more.

We are nearly done. Let’s focus on the action including the gauge fixing term:

S =

∫

d4x[−1

4
FµνF

µν − 1

2α
(∂µAµ)(∂

νAν)]

= −
∫

d4x[
1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAν) +
1

2α
(∂µAµ)(∂

νAν)]

= −
∫

d4x[
1

2
∂µAν∂

µAν − 1

2
∂µAν∂

νAµ +
1

2α
(∂µAµ)(∂

νAν)]

= −1

2

∫

d4xAρ[−∂µ∂µgρν + (1− 1

α
)∂ρ∂ν ]Aν

(218)

integrating the derivative terms by parts. Now we can go into momentum space,

S =
1

2

∫

d4pAµ(−p)Aν(p)[gµνp2 − (1− 1

α
pµpν ] (219)

and we see we just have a quadratic form. The propagator will be

−iDµν(p) = i[gµνX(p) + pµpνY (p)], (220)

where X and Y are scalar functions of p. Going through the index-pushing exercise (a
homework problem) of inverting the differential operator,

gµν = [p2gµρ − (1− 1

α
)pµpρ][gρνX(p) + pρpνY (p)], (221)

gives the photon propagator

−iDµν(p) =
i

p2
[gµν − (1− α)

pµpν
p2

]. (222)

The parameter α is a gauge choice. Invariant amplitudes correspond to physical processes
and they will be gauge invariant. Thus the parameter α will not be present in the final
answer. Sometimes, one carries α through the calculation, as a check against mistakes: if
it survives till the end, you have a mistake. More often, one picks a “convenient” choice of
gauge; “convenience” meaning that with that choice the calculation simplifies. Two such
choices are
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• Feynman gauge: α = 1

−iDµν(p) =
igµν
p2

. (223)

• Landau gauge: α = 0

−iDµν(p) =
i

p2
[gµν −

pµpν
p2

]. (224)

Both are obviously covariant.

V. POSSIBLE READING LIST

Here are a collection of books and papers I have found useful for describing various
aspects of quantum field theory. The preprints with “arXiv” labels come from the data base
http://arXiv.org/ (which is the standard data base for most of theoretical physics).

The two books I debated between as a text (not that I will follow anything very closely)
were Zee [3] and Srednicki [4]. They are quite complementary (with identical advice for the
reader). I used Zee the last time I taught this course and the students didn’t care for it
so I will try Srednicki this time. Two very particle-physics oriented books are Schwartz [5]
and Peskin and Schroeder [6]. Ramond [7] has things other books don’t, specifically the use
of generating functionals for perturbation theory and a nice calculation of beta functions.
Ryder [8] is concise but complete; I often put it on reserve when I teach the formal parts of
electrodynamics. Weinberg’s books [9, 10] are very complete, but maybe they aren’t really
textbooks. (My first QFT course was from Weinberg.) Finally we are far in the past with
Bjorken and Drell [11, 12]. In their day they were quite influential and for a few special
subjects (solving the Dirac equation, doing tree-level QED) they are still worth consulting.
I’ve put Refs. [3–8] on reserve in the Engineering Library, which is in the basement of the
math building. Try to violate social norms and go in the stacks there to browse the QFT
book section. You will find a lot of books, including (hopefully) the one for you.

I added Martin’s supersymmetry primer [13] for its Sec. 2, which has a terse description
of Dirac, Weyl and Majorana fermions.

I included some statistical mechanics oriented texts, Refs. [14–19] on my list. I have
a problem with condensed matter field theory books in that I find their treatment of path
integrals and perturbation theory somewhat unsystematic, but then I am a particle physicist.
Maybe I am missing something! The classic review article on the renormalization group by
Wilson and Kogut [20] is not to be missed. Polyakov [21] had interesting things to say.
Finally I include my own book [22] (not to be selfish, but bits of this course washed up
there) and for BEC aficionados, Pethick and Smith[23].

Various “inspirational” articles [24–28] and some introductions to effective field theory
[29–33] round out the list.

Remember, you can’t learn quantum field theory from any one book or any one course.
Bohr said that “The opposite of truth is falsehood but the opposite of a great truth is
another great truth.” Quantum field theory contains many great truths.
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