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ABSTRACT

A replacement for Newtonian gravity is proposed: mφ(r) = −(GmM/r)

cos(2πr/λo). (This replacement is motivated by the recent observation that only

a very few central point potentials have an associated uniqueness theorem.) The

spacing of external shells around the elliptical galaxy NGC 3923 gives a tentative

value of 1800 light-years for the universal constant λo. This value of λo also is

accommodated by the observed distribution in the diameters of lenses associated

with bright barred disk galaxies and by the spacing of gravitationally lensed images

in the Einstein Cross (2237+0305).

The potential is consistent with the flat rotation curves and the Tully-Fisher

law for disk galaxies. It also explains several features of our Galaxy. A previously

catalogued asymmetry in the azimuthal velocity distribution of stars near the sun

is interpreted as evidence for the hypothesis and against a smoothly-varying spher-

ical halo of galactic dark matter. The observed broad distribution in radial space

velocities of nearby stars is only understood if the sun is near an inner turning

point. This point is confirmed directly. Circular features near the Galactic center

are consistent with the potential as is a central bar. The bar is related dynamically

to the spiral arms and, surprisingly, to the dwarf spheroidals. The dispersion in

the radial velocity within each of the nearby spheroidal dwarf galaxies is seen as
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a consequence of the Galactic potential, rather than internal dark matter. Cat-

alogued radial velocities of the globular clusters test both the proposed and the

Newtonian potentials.

The cosinusoidal potential is written in a form appropriate for general relativ-

ity. This is done by adding a term −ηµνΛ to the usual term gµνΛ which expresses

the cosmological constant. Λ is identified with λo: Λ = −(1/2)(2π/λo)
2. A conse-

quence of the relativistic formulation is that the bending of light by gravitational

lenses, even those with no apparent lens, can probably be explained without dark

matter. Alternatively, the phase and rapid oscillation of the cosinusoidal potential

reduces to nearly zero its contribution to the time delay between images. The

remaining, geometric, time delay is predicted to be 25 days between the two semi-

circular rings in the radio lens MG 1634+1346. This prediction is yet to be tested.

The cosmological implications are investigated. Surprisingly, the self-interaction

of a large homogeneous sphere is explosive, a feature which assures that the age of

the universe ≃ H−1
o (not (2/3)H−1

o ). The proposed value of λo together with the

present density of baryons point to an inflationary period at a red shift z ≃ 100, 000.

This is a lookback time which is consistent with that expected from observed

periodicities in present galactic densities. The potential also provides a natural

explanation for the stability of the recently discovered chain galaxies.

Finally, this proposal requires that gravitational radiation have a dispersive

group velocity, vg = c(1 + ν−2λ−2
o c2)1/2 > c. The consequences of this tachy-

onic behavior are discussed. The appendix addresses the complementary issue of

whether the photon has a small mass, mγ = h/λo, and thus a velocity, vγ =

c(1 − ν−2λ−2
o c2)1/2. Evidence for such a massive photon is found in the magnetic
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fields within the Galaxy, M31, and the Coma cluster.

SUBJECT HEADINGS: Gravitation, Galaxy: NGC 3923, Relativity, Cosmol-

ogy: Dark Matter, Galaxies: Structure, Stars: Statistics
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1. INTRODUCTION

Recently Bartlett & Su (1994) have shown that of all possible central point

potentials, φ(r), only two permit a uniqueness theorem in all bounded geometries.

These potentials are well-known: the Newtonian, φ(r) = A/r and the Yukawa,

φ(r) = Ae−kr/r. Each has the property that knowledge of the potential on an ar-

bitrary boundary gives uniquely the potential within. The extension of the Yukawa

potential to imaginary k yields the cosinusoidal potential,

φ(r) = Acos(kr)/r. (1)

We have shown that this third potential generally permits uniqueness, failing only

when the boundary forms a resonant cavity for the given k.

The Newtonian and Yukawa potentials have been applied in situations well re-

moved from electrostatics, the study for which the uniqueness theorem is typically

used. The question naturally arises as to whether there is any use for the cosinu-

soidal potential. Has nature found a roll for a potential of the form cos(2πr/λo)/r?

2. HYPOTHESIS

As the least well understood of the fundamental forces, gravitation is a possible

place for the new force. Begin by considering the usual limit of small velocities

and not too dense local matter. In distinction to the Newtonian potential which

requires but a single universal constant, the cosinusoidal potential needs two. The

coefficient A is fixed by the need to recover Newtonian dynamics at short distances.

The range parameter λo is less than or of the order of galactic dimensions, since

this is the distance over which Newtonian mechanics first shows any evidence of
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failure. Thus

mφ(r) = −(GmM/r)(cos(2πr/λo)), (2)

where λo >> 1 AU is a universal constant.

In the limit r/λo → 0, cos(2πr/λo)/r → (1/r)[1 − (1/2)(2πr/λo)
2] and we

recover Newtonian gravity as we must for the solar system, but not necessarily for

galactic systems.

Our goal, then, is to alleviate the dependence of astrophysical theories on

dark matter by modifying the law of gravity. In order for such an hypothesis

to succeed it must overcome widely held beliefs: 1) that whether identical units

attract (as is the case with gravity) or repel (as with electricity) is dependent on

the evenness or oddness of the spin of the mediating field and 2) that no scheme

of modified Newtonian mechanics that is based solely on changing the dependence

of the gravitational law on distance can satisfy the Tully-Fisher relation for disk

galaxies, (Mlum α v4
rot). Since (1) is crucial to the whole thesis, it is discussed now.

We will return to the Tully-Fisher relation later.

Jagannathan & Singh (1986) have carefully examined the question of attrac-

tion vs. repulsion. They conclude that the connection between even spin and

attraction is upheld, particularly when the fundamental potential is of the Yukawa

form, e−kr/r, k ≥ 0. The cosinusoidal potential considered here can formally be

considered to be the real part of a Yukawa potential with an imaginary k. The

consequent distinction between negative and positive k2, however, spoils the pos-

itive definiteness of a critical integral [eq. (5)] in Jagannathan and Singh’s proof.

Thus the cosinusoidal potential may profitably be considered further.
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We begin by examining the astronomical evidence for a particular value of λo.

I then show the compatibility of eq. (2) with the form of general relativity. In

the following paper general relativity itself is generalized in a way that allows the

interaction between matter and antimatter to be different from that of matter and

matter, a difference which could be responsible for the decay KL(2π).

3. COSINUSOIDAL POTENTIAL

The conjunction of luminous matter and the usual Newtonian mechanics is

inadequate to explain several astronomical phenomena. These include the aver-

age speed of galaxies within clusters, gravitational lensing, x-ray halos of elliptical

galaxies, and the flat rotation curve of disk galaxies. Reviews have been given

recently of the roll that either dark matter (Trimble 1987) or non-Newtonian grav-

ity (Sanders 1990) could have in these effects. Subsequently, Gerhard and Spergel

(1992) showed that even the most successful of the non-Newtonian theories, that of

Milgrom (1984, 1995), may require dark matter to explain the motions of the dwarf

spheroidal galaxies near the galaxy. They also emphasized a problem for Newto-

nian theories: the mass to light ratio must vary by at least a factor of ten among

the eight dwarf spheroidals. Alternatively, recent observations of gravitational mi-

crolensing by ordinary, non-luminous matter (MACHOS) seems to account for a

fair fraction of the flat rotation curve of the Galaxy, at least if Newtonian dynamics

is assumed (Alcock et al, 1995).

We shall return to these important problems later. First it is necessary to

develop the general dynamics to be expected from a cosinusoidal potential. Let

us begin with elliptical galaxies. Their shape often is approximately spherical and

one particular case (NGC 3923) offers a good opportunity for determining λo.
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3.1. Elliptical galaxies

According to the hypothesis, the motion of galactic matter m in the presence

of a point source M is governed by eq. (2). The associated gravitational field,

gr = −∂φ/∂r = −(GM/r2)cos(2πr/λo) − (2πGM/rλo)sin(2πr/λo), (3)

reduces to the familiar Newtonian one in the limit r << λo. In case r >> λo, the

second term dominates and

gr = −(2πGM/rλo)sin(2πr/λo). (4)

This field differs in two essential ways from the usual one. It is periodically

attractive and repulsive; it diminishes as r−1 rather than r−2.

An extended source has the same features: periodicity and 1/r behavior of

both potential and field. Significantly, not just the monopole, but all multipole

moments (which have reflection symmetry) contribute coherently to a potential

which falls off as cos(2πr/λo)/r.

The multipole expansion for the source is readily developed in terms of the

spherical harmonics Ynm(θ′, φ′) and the spherical Bessel functions jn(2πr′/λo) and

yn(2πr′/λo). The point potential, eq. (2), is expressed in terms of the source coor-

dinate r′(r′, θ′, φ′) and field coordinate r(r, θ, φ) through the identity (Antosiewicz

1964)

−cos(2πs/λo)/s = (2π/λo)Σ(2n + 1)jn(2πr′/λo)yn(2πr/λo)Pn(cosγ), (5)

where γ is the angle between r and r′ , s = |r − r′| and r > r′.
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Using the addition theorem to express Pn(cosγ) in terms of the source and field

angles we find for the potential away from an extended source,

φ(r, θ, φ) = (2πG/λo)Σnm(4π)1/2Anmyn(2πr/λo)Ynm(θ, φ), (6)

where the multipole

Anm = (4π)1/2

∫
ρ(r′, θ′, φ′)Y ∗

nmjn(2πr′/λo)dv′. (7)

For elliptical galaxies of low ellipticity we are most interested in the monopole,

Ao =

∫
(λo/2πr′)ρsin(2πr′/λo)dv′. (8)

Note that, in distinction to the Newtonian case, the monopole Ao is not simply the

mass, but rather is dependent on the radial distribution of matter.
1

The resulting

potential outside is given by eq. (6),

φ(r) = −GAocos(2πr/λo)/r. (9)

This potential leads to radially confined orbits; in the extreme cases, either circular

or purely radial. In the former, the periodicity of the potential yields shells having

a radius of rN = (N + 1/4)λo, where N is an integer. In the latter case, the

maximum radius of each shell is (N + 1/2)λo.

Although weak shell-like structures are evident in some of the galaxies illus-

trated in Arp’s catalogue (1960), shells were not studied systematically until Malin
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(1977) developed special techniques to enhance photographic contrast. Using these

techniques, Malin & Carter (1980, 1983) catalogued 137 examples of shells around

isolated (field) southern elliptical galaxies and discovered the picture-book exam-

ple, NGC 3923, which has more than 20 identifiable shells. Recently Seitzer &

Schweizer (1990) have used CCD’s (Charge Coupled Devices) to find that more

than 50% of their surveyed field ellipticals possess partial shells.

The galaxy NGC 3923 has been particularly well studied (Quinn 1984; Pence

1986; & Hernquist & Quinn 1987). In the latest publication, and the only one to

quote errors for each shell, Prieur (1988) combines photographic and CCD tech-

niques to measure the radii of 22 shells: the innermost being only 19 arc-seconds

and the outer 1170”.

The origin of the shells is controversial. Originally they were thought to be

the residue of shock waves from a galactic merger, a direct hit. This view has

recently been criticized by Thomson and Wright (1991) who believe a near miss

is the more likely origin. They further assume that the observed galaxy must,

before the encounter, have its exterior stars in nearly circular orbits. Ironically,

this assumption comes automatically if one assumes a cosinusoidal potential.

We now use the measurements of Prieur (1988) to obtain a tentative value for

the length λo. The shells, of slight ellipticity, cover about 60 degrees, extending 30

degrees to either side of the galaxy’s major axis. Prieur tabulated the maximum

radius of each shell Rn, n = 1, 22 including the shell’s thickness. Fortunately

the facts that (1) all measurements are made close to the same axis and (2) The

spherical Bessel function y2(x) ≃ −yo(x) for all x > 2π ensures that the Rn should

be quantized even if the galaxy has substantial quadrupole moments. In particular,
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the observed Rn should occur near (N + 1/2)λo for some integer N . Accordingly

we form the chi-square

χ2(ro, φo) = Σ22
n=1(r − Rn)2. (10)

Here the predicted value r is given by r = (N + φo)ro, and the integer N is

chosen to minimize the discrepancy between r and Rn. Trials were made for eight

values of the putative offset phase φo = 2πm/8, m = 1, 8 and for a continuous

range of the putative step length ro. For all eight φ′
os some 3” < ro < 4” will give

an acceptable χ2. Clearly our method has no power for such small r′os. However,

for larger r′os, only one choice of φo (φo = 5/8 cycles) gives an acceptable fit,

(χ2 = 15 when ro = 5.34”).
2

Figure 1 compares Prieur’s measurements with this

best fit.

Figure 2 shows how the underlying χ2 changes as ro is varied. Note that

the background χ2 increases quadratically with ro, as expected. This is why the

data are not accurate enough to rule out small r′os. However, the same quadratic

variation in the background makes the minimum at 3.5”, say, much more likely to

be a chance occurrence than the one at 5.34”. For this reason, the latter value is

claimed as a tentative measure of the fundamental length λo.

We may use the value of the step length in NGC 3923 together with the distance

to this galaxy and an assumed Hubble constant to determine λo. The proximity of

this galaxy to the Virgo cluster makes the extraction of its distance controversial

even when the galaxy’s red shift is well known. Both Prieur (1988) and Tully

(1988) assume a Hubble constant of 75 km s−1Mpc−1. The former finds a distance
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of 17.5 Mpc; the latter of 25.8 Mpc. We assume an average and thus adopt a

tentative value for λo = 5.34” × 21.7 Mpc = 560 pc = 1800 light- years.

It is clearly desirable to have this length confirmed in other shell galaxies. NGC

3923 is the prototype of a type 1 shell galaxy whose shells cluster about a common

axis. NGC 474 (Arp 227) is a type 2 galaxy whose partial shells are at position

angles all around the galaxy (Prieur 1990). As Prieur observes, type 2 galaxies

offer a problem for Newtonian physics, “No study has been done about this, but

I doubt that a family of stars formed a Hubble time ago with approximately the

same initial conditions will remain orbiting with the accuracy needed to make the

edges of the shells very sharp, sometimes not even resolved”. By contrast, the

cosinusoidal potential can have a minimum in free space. The shells do not have

to be rotating. Stability is not a problem.

To my knowledge, NGC 474 is the only other galaxy to have shells of published

radii (Schombert and Wallin 1987). The angular radii of the four measured shells

are given in their table I as 100”, 135”, 195” and 204”. The differences of these

radii (35”, 60”, and 9”) share a largest common divisor (d=8.64”) such that all 3

differences are within 0.5” of an integer times d. As can happen with only 3 data

points, the distance corresponding to d is close to 2λo, rather than λo itself. To see

this, we use our analysis of NGC 3923 and the ratio of the distances to NGC 474 and

NGC 3923 as listed by Tully (1988) to find that the predicted d is (2)(5.34”)(25.8

Mpc/32.5 Mpc)=8.48”. We can also find the distance corresponding to d directly

using values for the linear radii also given in Schombert and Wallin’s table I. This

also gives a distance of almost exactly twice λo, but for an assumed value of the

Hubble constant of 100 km s−1/Mpc, rather than the 75 assumed here. Thus we
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may conclude that NGC 474 confirms, with limited statistics, the tentative value

of λo found in NGC 3923.

3.2. Disk Galaxies

Of all objects having a scale greater than a kiloparsec, the disk galaxies are

the only ones whose internal velocities are well specified in all 3 directions.
3

Thus

these galaxies offer a good test for the proposed gravitational theory. Some might

say that this test is bound to fault any periodic potential. After all, the dominant

feature of disk galaxies is their spiral arms. These are not observed to be striated

by spherical channels. We shall return to this problem in sections 3.2.5 and 3.3.

In the meantime the reader is urged to temporarily suspend disbelief.

I believe that a proper test of the cosinusoidal potential is that it predicts the

observed circular features in the disk galaxies. These are (i) The distribution of

diameters of lenses and rings in barred galaxies, (ii) The flat rotation curves, and

(iii) The Tully-Fisher relation.

3.2.1 Lenses

The 121 barred galaxies listed in the Second Reference Catalogue of Bright

Galaxies (de Vaucoulers, de Vaucouleurs and Corwin 1976) have been surveyed by

Kormendy (1976). He finds that the majority of these galaxies have circular or

nearly circular lenses or inner rings. In his fig. 5 Kormendy shows the distribution

of the diameters of 38 rings, 26 lenses, and 4 ambiguous cases vs the absolute

magnitude of the individual galaxies. The figure shows that rings and lenses have

similar distributions. However, a distinction appears when the distributions are

projected on the ordinate. The lenses, but not the rings, appear clumped around

evenly spaced diameters.
4
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A measure of this clumping is given by the weighted sum

Nwt(λo, φo) = Σ26
i=1cos(2πri/λo − φo), (11)

where ri is the radius of the ith lens, λo is the putative gravitational wavelength,

and φo is a constant offset phase. Unfortunately φo is not known a priori, so I

evaluated Nwt(λo, φo) for many φo and show the positive branch Nwt(λo) of the

envelope of such curves in Fig. 3.

This envelope shows a peak of Nwt = 10.8 at λo = 475 pc. A perfectly periodic

spacing in radii would give Nwt = 26. Alternatively, the projection of a two-

dimensional random walk gives a noise level of Nwt = (26/2)1/2 = 3.6. Particularly

significant is that the putative λo from the 26 barred galaxies is within the range

of that determined by the single elliptical galaxy, NGC 3923.

Whereas there are other peaks near submultiples of 475 pc, there is none near

950 pc. This is consistent with the identification of 475 pc as the fundamental

period. Finally, note that the spread of observed diameters in Kormendy’s original

plot corresponds to r = (8±3)×475 pc. This moderate multiple makes our method

somewhat sensitive to peculiar velocities which may explain why the peak of Nwt

is only 40 % of the possible 26.

The question of why the rings fail to show any periodicity is an open one.

Kormendy observed that the rings and lenses are strongly correlated with the

type of galaxy. The rings are associated with late-type barred galaxies; the lenses

with early-type. Additionally the specification of the diameters of a ring is a two

parameter one; whereas only one is required for the sharp outer edge of a lens.
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3.2.2 Dynamics

The central dynamical problem of disk galaxies is how to reconcile two appar-

ently conflicting observations: the flat rotation curves and the Tully-Fisher relation.

The galactic rotational velocity v tends to a constant v∞ as r → ∞ rather than

falling off as r−1/2 as expected for a central 1/r potential. This rotational velocity

is related to the total luminous mass by the relation v4
∞ α Mlum (Aaronson et.

al. 1982). Evidently, Mlum is inadequate to explain the flat rotation curves, but

adequate for the Tully-Fisher relation.

The Newtonian solution is to posit dark matter in an approximately spherical

halo to account for the flat rotation curves. Since the amount of dark matter is

not otherwise constrained, the solution must work, but it begs the question of how

the spheroidal dark matter “conspires” with the flat luminous matter to preserve

both the rotation curves and Tully-Fisher relation. Alternatively, Milgrom (1984)

has dispensed with dark matter by modifying Newton’s second law so that for the

small accelerations at the periphery of a galaxy, F ≃ m(aao)
1/2, where ao is a

constant ≃ 10−8cm s−2.

The present proposal also does not require dark matter to explain either (i) the

flat rotation curves or (ii) the Tully-Fisher relation. The former follows because

gr α r−1 and the latter because the cosinusoidal potential weights matter in the

source by r−1 thus favoring central over peripheral matter. The following two

sections fill in the details.

3.2.3. flat rotation curves

We rewrite the potential eq. (6) in a form appropriate for an axially and
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equatorially symmetric galaxy:

φ(r, θ) = (2π/λo)GΣn−evenAnyn(2πr/λo)pn(cosθ), (12)

where the multipole

An =

∫
ρ(r′, θ′)pn(cosθ′)jn(2πr′/λo)2πr′2d(cosθ′)dr′ (13)

and the pn are normalized Legendre polynomials, pn(cosθ) = (2n + 1)1/2Pn(cosθ).

For even n, the spherical Bessel functions yn(x) → −(−1)n/2cos(x)/x and

jn(x) → (−1)n/2sin(x)/x as x → ∞. At the equator the normalized Legendre

polynomials reduce to pn(0) ≃ (−1)n/2 for all even n. Thus for large r, all multi-

poles give contributions to gr which are in phase and fall off as r−1,

gr(r, π/2) ≃ −(2πG/λor)sin(2πr/λo)Σeven nAn. (14)

Observation shows that the curves of v vs r are approximately flat and conse-

quently that gr α r−1. This observation follows follows from our theory if we assume

that the galactic matter is disposed so that the weighted average of sin(2πr/λo)

over a cycle, ζ is substantially independent of r.

3.2.4. Tully-Fisher relation

It is important to contrast the 1/r fall-off of gr [eq. (14)] for multipoles of

arbitrary order n with that generated by multipoles with the Newtonian potential,

gr ≃ 1/r2+n. Thus to investigate the source strength for the Tully-Fisher relation,

it is now necessary to look at every multipole moment An, not just the monopole.
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To check that the cosinusoidal potential is consistent with the Tully-Fisher

relation we must make some assumptions. At first sight, these assumptions may

appear very coarse, but then the Tully-Fisher relation is only satisfied to ± an

astronomical magnitude. Begin by evaluating the An [eq. (13)] subject to the

following assumptions:

Universal ζ: Assume that galactic matter is positioned so that for all galaxies,

and all radii ζ ≡< sin(2πr/λo)) >cycle= const. ≃ 0.4

Complete Disk: Neglect any contribution from a spherical core. Assume all

galactic matter is in a disk of surface density σ = σoe
−r/l, where σo is a universal

constant and the size parameter l varies from galaxy to galaxy (Kent 1987).

Galactic Scaling: Assume all galaxies have similar profiles of thickness 2z vs

radius, z = lfo(r/l), where fo is a universal function. In particular, let the ratio

between z and r at r = l be 1/no = fo(1). (Data from our galaxy indicates

no ≃ 3.5 kpc/750 pc = 5.)

Minimum Thickness: Assume l > (n2
o/20)λo. The multipole source strength

An → 0 for large n for either of two reasons. The galaxy is so thick for the

critical r < l that the integral of the pn(cosθ) over angles averages to zero. Since

the first zero near the equator of the even pn(cosθ) occurs at |π/2 − θ| ≃ 1/n,

the assumption of geometrical scaling then sets a limit n = no on the order of

the multipole. Alternatively, n could be so large that the phase of jn(2πl/λo)

is substantially different from its asymptotic phase. A study of the zeros of the

spherical Bessel functions shows that jn(2πl/λo) has slipped by a quarter of a cycle

or more whenever n2 > 20l/λo. The criterion of minimum thickness ensures that
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the Legendre polynomials, not the Bessel functions limit the order of An.

With these assumptions we have simply:

An =

∫
2πr′dr′jn(2πr′/λo)σ(r′) =

∫
ζλoσoe

−r′/ldr′ = ζσolλo, (15)

for n < no and An = 0 for n > no. By contrast the mass, in the absence of dark

matter, is the integral,

M = Mlum =

∫
2πr′σoe

−r′/ldr′ = 2πσol
2 (16)

Thus l = (M/(2πσo))
1/2 and An = ζ(Mσo/2π)1/2λo, for n even and ≤ no. Finally

we substitute for An in eq. (14) above and find for the average value of gr weighted

by the matter in one cycle:

< gr >= −(no/2 + 1)ζ2G(2πMσo)
1/2/r, (17)

a result which does not depend on λo and which is consistent with the TF relation,

v4
∞ = (< gr > r)2 α Mlum.

We can go another step and ask how much dark matter is required to generate

the < gr > of eq. (17) assuming Newtonian mechanics. The dynamical Newtonian

mass is

MN ≡ − < gr > r2/G

= (no/2 + 1)ζ2r(2πMσo)
1/2 = (no/2 + 1)ζ2(r/l)M ≃ (4r/l)ζ2M. (18)

Evidently the ratio MN/M increases linearly with the ratio of the maximum ob-

servable radius of a particular galaxy to its own size parameter. This behavior
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agrees with the observation of Sanders (1990) that MN/M does not increase with

the absolute size of a galaxy, but is evident for small disk galaxies as well as large.
5

At present, the luminosity of a galaxy can be followed through 6 magnitudes, from

the central maximum σo of about 20 Mag/arc-sec2 down to 26 Mag/arc-sec2 (Kent

1987). Thus r/l ≃ 6 and MN/M ≃ 24ζ2 ≃ 4, in rough agreement with observation.

The argument above may be a little too simple for real galaxies. In particular

the assumptions of universal ζ and a complete disk are too draconian for a potential

which weights sources inversely with their distance from the center. Allowing a

central bulge of Meff ∝ σol
2 does not compromise either the flat rotation curves

or the Tully-Fisher relation. This bulge could account for the observation that the

motion of stars near the sun may require a local ζ < 0.4. (See section 3.3.1).

3.2.5 Stability

For the Newtonian potential, an isolated spherical shell of matter will always

produce an attractive force at all external points. The same is not true for the

cosinusoidal potential. Here the potential and field both alternate in sign. For a

shell of mass Ma and radius a, the potential and field are

φ(b) = −GMa(λo/(2πab))sin(2πa/λo)cos(2πb/λo) a < b. (19)

gr(b,Ma) ≃ −(GMa/ab)sin(2πa/λo)sin(2πb/λo). r > λo (20)

The presence of two sine functions in gr has an important consequence for stabil-

ity. Matter which is orbiting in an inner shell ((N − 1/2)λo < r < (N + 1/2)λo)

will always increase the amplitude of the potential at an outer shell. To see

this, we have only to apply the virial theorem to the shells in succession. Start
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with central matter Mo at a radius a < λo/2π. This matter produces a field

gr ≃ −(2πGMo/bλo)sin(2πb/λo) at the location of the first and successive shells

(b ≃ Nλo, N = 1, 2...). But by the virial theorem 0 < < T >=< rdφ/dr >=

+2πGMo< sin(2πb/λo) > for each star in a given shell. The fact that kinetic ener-

gies must be positive thus ensures that each shell contributes coherently with the

central mass to the monopole moment Ao in eq. (8).

There also is a distinction between the cosinusoidal and the Newtonian po-

tentials for the fields inside a shell. For the inverse square law there can be no

gravitational field inside an isolated spherical shell of matter. The same is not true

for the cosinusoidal potential. For it, the reciprocity theorem given an expression

identical to eq. (19)

φ(a) = −GMb(λo/(2πab))sin(2πa/λo)cos(2πb/λo) a < b. (21)

This equation gives the the potential at r = a due to a uniformly dense spherical

shell at a larger radius b. Thus the gravitational field inside the shell is

gr(a,Mb) ≃ +(GMbλo/ab)cos(2πa/λo)cos(2πb/λo). r > λo (22)

Unlike the Newtonian case, this field can be as large as the reciprocal external

field, gr(b,Ma). Assume that the galaxy is formed from the inside out. Inorder for

the succeeding layers not to disturb the interior is is necessary that

< ρcos(2πb/λo)/b >= 0 (23)

over each successive layer.
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This equation is a “galaxy building principle” which galaxies have evidently

met. To confirm this fact observationally, however, is difficult. The equation

constrains circular orbits to be at discrete radii, r/λo = N +1/4. The phase space

available for such a circular orbit is vanishingly small, however. It is much more

likely that a galaxy will form with ζ ≃< vφ/vφ(max) >2 being substantially less

than 1. In that case, the galaxy building principle can be satisfied, particularly

if, in addition to azimuthal velocity, there are large radial motions that bring the

orbits out to nearly the potential maxima at r/λo ≃ N + 1/2.

These necessary radial motions help explain why galactic shells are so difficult

to detect that they have only been studied in the last 15 years. The shells are not

a series of delta functions; they are broad (and thick) bands (which are generally

viewed obliquely).
6

Finally, note that the galaxy building principle can be directly extended to

higher multipole moments. The internal field caused by matter at radius b having

an angular distribution Pm
2n(cosθ)cosmφ is proportional to y2n(2πb/λo) which be-

haves like (λo/2πb)cos(2πb/λo)for b > (n2/5)λo. Thus for large b, the same radial

distribution of matter used to kill the internal monopole field will kill that from

even the high multipoles needed to make a disk. Similarly, the azimuthal density

fluctuations needed to make spiral arms (Lin & Shu 1964) can occur without dis-

turbing the interior of the galaxy. Additionally, the internal potential (as well as

the field) is killed by the galaxy building principle.

For the Newtonian potential the situation is dramatically different. Here there

is no option for killing any internal field except for the monopole field. Further

each additional layer adds coherently to the monopole potential near the center.
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These differences will be important in Sect. 3.3.3 where bars and spiral arms are

discussed.

3.3. The Galaxy

In this section we study the Milky Way as an example of a disk galaxy. The

velocity distributions of stars near the sun give an estimate of the local phase of

cos(2πr/λo) and of the magnitude of ζ. The dominantly circular motion of gas

near the centers of the both the Milky Way and Andromeda show the oscillations

in the cosinusoidal potential. Perhaps surprisingly, the cosinusoidal potential is

found to be compatible with a bar which extends over several cycles. Then the

observed bar is related to spiral density waves and the dwarf spheroidal galaxies

which orbit the Galaxy at large radii. Finally, the motion of the globular clusters

test both the cosinusoidal and Newtonian potentials.

3.3.1 Stars near the Sun

Over 60 years ago, Oort (1928) realized that the 3-D velocity distributions

of local stars offers a unique possibility for exploring the dynamics of the galaxy.

We are interested in these distributions now because they provide detailed tests of

the proposed potential as well as a local measurement of ζ. Our study is helped

by the recent release of the 3rd edition of the Catalogue of Nearby Stars (CNS3)

in electronic form (Gleise & Jahreiss 1991). The catalogue list all known stars

within 25 pc of the sun (and a few beyond). About half of these or 1946 stars

have sufficiently well determined parallaxes that CNS3 lists their three velocity

coordinates (relative to the sun): u,v, and w. These form a right handed coordinate

system and respectively are the space velocity in the galactic plane and directed

to the galactic center; the velocity in the direction of galactic rotation; and the
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velocity perpendicular to the plane and in the direction of the north galactic pole.

The analysis which follows is based on these 1946 stars. Call this restricted set

CNS3R. I have made no attempt to separate the stars by age or even to remove

the second member of a doublet. The first decision was to avoid the interjection

of the possible bias of the author. The second decision has in effect already been

made by Gleise & Jahreiss. Although 30% of the local stars are doublets, only 149

of the l946 selected stars are the second (or third) member of a multiplet. The

space velocities of light companion stars (e.g. that of Sirius) have been omitted,

probably because they change so quickly.

Histograms in the space velocities u, v, and w are shown in Fig. 4. A striking

feature of these graphs is the asymmetry in the plot for the azimuthal velocity v.

There is a sharp, high-velocity cut-off in the distribution for v. Oort interpreted

this feature as evidence for the escape velocity from the galaxy. The modern

explanation is more tentative. The cut-off at v=+65 km/s could reflect an edge

to the galaxy at 25 kpc or the absence of a mechanism which could bring in stars

from, say, 40 kpc on a highly elliptical orbit (Mihalas & Binney 1981).

The modern explanation is not without problems, however. The fall-off from

the peak is distinctly asymmetric. Even within just ± 30 km/s of the peak, the

decline on the positive side is 40% greater than the decline on the negative. It

is hard for Newtonian mechanics to account for such asymmetries over a short

interval about velocities near the circular velocity of the sun about the center of the

galaxy, currently accepted to be vsun = 231 km/s (Jones, Klemola, and Lin 1994).

The scale for such changes is set by the difference between the escape and circular

velocities for a galaxy compressed to its core: ∆vNewton = vsun(21/2−1) = 90 km/s.
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Dark matter could, help, but is not likely to do so if, as in current models,(Primack,

Seckel, & Sadoulet 1988), it is spherical and diffuse (to provide galactic stability).

The problem in the azimuthal velocity v could be just be an environmental

one. Nevertheless, it is worthwhile to try to find a dynamical origin. Ironically, the

proposed cosinusoidal potential makes this quest easier than it is with Newtonian

mechanics. This is because the cosinusoidal potential weights the contribution of

central matter to g(r) more heavily than that of distant matter. Further, as we

have seen in section 3.2.4, even a disk galaxy is unlikely to have many higher order

multipoles. Those that it does have oscillate in phase with the monopole (at least

near the galactic equator).

Thus it is fruitful to consider the effective one-dimensional potential, of an

isolated mass M at the origin, φe(r) = −(GM/r)cos(2πr/λo) + L2/(2r2), where

L = vφr is the angular momentum per unit mass of the test particle (Goldstein

1951). This potential may be given a universal form by setting GM = 1/2π and

measuring distances in “wavelengths”: x = r/λo. Then

φu = −(1/2πx)cos(2πx) + (1/2)(Lu/x)2, (24)

where the universal potential and universal angular momenta are given by φu =

φe(λo/2πGM) and Lu = L/(2πGMλo)
1/2. The universal form is particularly useful

here where we do not know the effective source strength GM but do know the

distances r and λo and wish to use the universal form φu to predict the behavior

of the radial velocities of nearby stars −u, given their azimuthal velocity v.

To set the scale for x, note that the spacing of shells in NGC 3923 has given

the tentative value λo = 560 pc. Using the adopted value rsun = 8.5 kpc, we find
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that xsun ≃ 15. Fig. 5 shows the universal potential φu for x < 18 and several

values of Lu.

The most striking feature of the plots is the series of plateaus at φu = 0.5.

These occur whenever x = Lu = N + 1/4; N = 0, 1, 2....Here sin(2πx) = 1 and as

expected from eq. (24) the stable situation is one of a circular orbit with maximum

possible (and x-independent) azimuthal velocity:

vφ(max) = Lu/x = 1. (25)

This vφ(max) is the global escape velocity, (2πGM/λo)
1/2 in dimensional units. It

is the maximum velocity which a star can have and still be bound by the galaxy.

Note, however, that to be bound the star must be close to x = N + 1/4 cycle.

The local escape velocity for a star not near 1/4 cycle is much smaller. Note,

further, that as a concept, (but not a magnitude), vφ(max) replaces the usual

vφ(LSR). The Local Standard of Rest is inherently a Newtonian concept which

assumes that circular orbits of velocity only weakly dependent on radius can ex-

ist anywhere throughout the disk. This is hardly the case with the cosinusoidal

potential depicted in Fig. 5.

The opposite extreme, radially oscillating orbits, occur when Lu = vφx = 0

Here the effective potential reduces to φu = −(1/2πx)cos(2πx). This potential

leads to radial oscillations about the minima at x = N . The maximum excursion

is only from x = N − 1/2 to x = N + 1/2. (This is in marked contrast to the

Newtonian limit where radially plunging orbits go right through the origin). The

maximum velocity amplitude slowly decreases with N:

vr(max) ≃ (4/2πN)1/2 = (4λo/2πr)1/2vφ(max). (26)
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In the general case of fixed total energy Eu,

vr = ±vφ(max)(2(Eu − φu(x, Lu))1/2. (27)

The central question is whether one can find a place for the sun on Fig. 5.

Neither of the two extremes above is possible. If Lu = 0, the sun would have to

move on a radial orbit. Alternatively if Lu takes on its maximum value x, there

is no potential well and no radial motions are possible. This is in contrast to the

observed broad distribution in radial velocities for neighboring stars (Fig. 4). For

any given x, stable orbits will occur only over a restricted range of vφ and vr.

This range can readily be found using eq. (27). Here the limits on the range are

determined by the condition that the star not have so large an E that it goes past

the maxima that occur at x ≃ N + 3/8. The results for 14 5/8 ≤ x ≤ 15 3/8 are

shown in Fig. 6 where the permissible range is under the bell-shaped curves.

These limiting curves show a curious asymmetry about x = 15 1/4. The ones

for x < 15 1/4 are broad maxima; the one for 15 3/8 is a cusp. This asymmetry

is a direct consequence of the maximum in φu which occurs near the outer turning

point, but not the inner. If a star of energy E = φu(max) is a small distance

∆r away from an outer turning point, both its maximum radial velocity vr and

the departure of its azimuthal velocity ∆vφ from that appropriate for a circular

orbit vary as ∆r. Conversely, near an inner turning point, ∆vφ still α ∆r, but

vr α (∆r)1/2.

It is instructive to relate these theoretical curves to the observed scatter plot

of the azimuthal vs the radial velocity for the stars in CNS3R. This comparison is
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shown in Fig. 7, for various assumptions about vsun and the global escape velocity,

vφ(max). Unfortunately, neither of these velocities is very well known. The most

comfortable fit is for vsun given by the dwarf spheroidals (Sect 3.3.4) and vφ(max)

near the upper end the range (450km/s < vesc < 650km/s) found in a recent study

of high velocity stars (Leonard and Tremaine 1990).
7

That the fit (by eye) is made with only a 5 km/s offset in the radial velocity u

indicates that the sun is close to a turning point. Many nearby stars have azimuthal

velocities comparable to the sun’s, but have appreciable radial velocities. This

feature can only be accommodated if the sun is near an inner turning point, where

the maxima in Fig. 6 are broad. (Parenthetically, a radial phase between 5/8 cycle

and 7/8 cycle, as suggested by the data, implies that the sun is presently being

repelled by the galactic center)!

Near an inner turning point there is a positive correlation between the apex of

the dynamic limit in vφ and the radius x of a given star. (Compare the curves for

14 3/4 and 14 7/8 in Fig. 6) It is important to check whether the stars in CNS3R

show this correlation. (Although the spatial position of stars is not given directly

in CNS3, the position can be readily calculated from the tabulated parallax, decli-

nation and right ascension.) The leverage given by the 25 pc range of CNS3 is too

small for this correlation to be evident in a u-v scatter plot, but it can be seen in

the histograms for v = vφ star − vφ sun.

Of the 1946 stars in CNS3R, 579 satisfy rstar − rsun < 6pc and 572 satisfy

rstar −rsun > 6pc. The former group consists of stars which are at least 6 pc closer

to the center of the galaxy than the sun. Call this group ‘−’ stars; the latter ‘+’.

Histograms of N+ and N− vs v are given in Fig. 8. Separately each resembles a
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cusp, peaking near v=0, as expected since the sun (v ≡ 0) is close to the dynamic

limit. But the cusp for + stars is shifted to higher v. This is revealed in a histogram

of the difference ∆N = (N+−N−). (∆N is a particularly significant variable since

local idiosyncrasies such as streaming motions, which can appear in the separate

plots of N− and N+ should cancel in the difference plot). The distribution in ∆N

shows the expected double cusp near v = 0.

Significantly, this double cusp is evident in both the subsets 6pc < |rstar −

rsun| < 12pc and 12pc < |rstar − rsun|. Also the cusp does not appear in the

remaining sample of 795 stars which have radii very close to that of the sun (|rstar−

rsun| < 6pc). See Fig. 9.

3.3.2.Galactic Center

The cosinusoidal potential of a an isolated point mass separates space into three

qualitatively different parts. Stable circular orbits are permitted only over about

1/4 of the space (Nλo < r < Nλo + 0.25). More room is available for non-circular

orbits which are merely radially confined (r(max) − r(min) < λo). Finally there

are periodic ”forbidden” regions which no stable orbits can enter. When r >> λo,

these regions are small (At R = 8.5 kpc, the forbidden region covers only 5% of a

cycle). However, their size increases markedly as one approaches the origin. The

first forbidden region (r between 0.45 and 0.68 λo) covers nearly a quarter of a

cycle. (See Fig. 10).

We may look for evidence for or against forbidden regions near the center of

the Milky Way. A tracer for the central potential is the 21-cm emission from a

thin disk of hydrogen gas first observed systematically by Rougoor and Oort (1960).

Mihalas and Binney (1981) summarize these observations, “[assuming Ro = 10 kpc]

27



the data indicate that there is an inner disk of radius about 300 pc and rotation

speed of about 200 km/s surrounded by a ring having a radius of about 750 pc

and a rotation speed of about 265 km/s. There is no sign of expansional motion in

either disk or ring.” After converting to the currently accepted value Ro = 8.5 kpc,

these radii correspond to 0.46 λo and 1.14 λo, in agreement with allowed regions

for circular motion. Confirmation of the first forbidden region centered at 0.56 λ is

given by the modern 13CO emission data of Bally et al (1988). Their data shown

in their fig. 3 as plots of integrated emissivity vs latitude and longitude shows

conspicuous voids for longitudes 1.7o < |l| < 2.6o corresponding to the projected

radii (250 pc and 380 pc) which limit the first forbidden region.

A similar thin sheet of gas is evident near the center of M31. The kinematics

of this sheet were thoroughly explored by Rubin and Ford (1971). Although the

gas does show substantial non-circular motions, Rubin and Ford were able to use

Balmer alpha and nitrogen emissions to establish a mean rotation curve shown

here as Fig. 11. The plot of vrot vs r shows conspicuous breaks at the beginning

and end of the first forbidden region. Additionally vrot declines as 1/r in the

forbidden region as expected from angular momentum conservation. That the gas

in the forbidden region is tenuous can be seen directly from Rubin and Ford’s

spectrographic plate, (their fig. 1).

Finally, we note that regions are absolutely forbidden only for a central point

potential. The next section examines the consequences of an extended source.

3.3.3. Bulges, Bars and Spiral Arms

For Newtonian gravity there is no question that the center of the galaxy is at

a deep potential minimum. The potential rises monotonically as r increases. The
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rate of rise ∂φ/∂r may be a function of r and angles, but the slope is always positive.

This dull behavior comes from Newton’s third theorem, that a mass experiences

no force when inside a thin homogeneous shell whose boundaries are two similar,

concentric ellipsoids. Each shell, however, contributes its own negative potential to

the space within. As r increases, the number of shells simply diminishes. Realistic

density distributions (Binney & Tremaine 1987) lead only to small departures from

this naive model.

An extended source has a radically different effect on the cosinusoidal potential.

Here the galaxy building principle (Sect 3.2.5) is needed to ensure that the internal

field is unaltered by the addition of successive cycles of matter. But, in distinction

to the Newtonian case, the same distribution of matter within a cycle that makes no

contribution to an internal field, also makes no contribution to an internal potential.

The potential at the center will still be negative (due to the inner (Newtonian) half-

cycle), but the potential will not be at a deep minimum.

As r increases from the center in the plane of the disk all the multipole mo-

ments (of order less than (20r/λo)
1/2) act coherently. This makes it likely that the

envelope of the potential will go through a maximum before decaying as 1/r. This

maximum is a novel feature, not present with the Newtonian potential, nor even

with a cosinusoidal potential surrounding a point source. The maximum separates

the internal region where radial motion can extend over several cycles from the

external region where it cannot. I identify the internal region with the bulge; the

external with the disk.

The potential is sketched in Fig 12. Here the bulge extends to the radius

r = rB. Interior stars of large radial velocity (but small azimuthal velocity) go
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past the center and are reflected at rB and at lesser radii of similar phase (r ≃

Nλo +3/8). The consequent accumulation of stars at a phase where sin(2πr/λo) >

0 deepens the oscillations of the exterior potential thus enhancing the stability of

the entire disk. The stars of large radial velocity and excursion coexist with the

ones of dominantly azimuthal velocity and limited radial excursion. This feature

is compatible with the observations of both motions near the galactic centers of

the Milky Way and Andromeda (Rougoor and Oort 1960; Rubin and Ford 1971;

Bally et al 1988).

Our discussion thus far has assumed axial symmetry. The presence of interior

stars of large radial velocity should make it possible for disk galaxies to destroy

this symmetry by forming bars. The alternation of sign in the appropriate ordinary

Bessel function, Yo, gives stability even to thick bars. An essential requirement is

that the ends of the bar rotate much more slowly than the corotation velocity.

This is a consequence of the virial theorem (for the dominantly central poten-

tial), < T >=< rdφ/dr > . The radially unconfined stars of the bar spend less

time at maximum radii (where dφ/dr > 0) than do the radially confined stars.

Thus the kinetic energy of stars in the bar must be lower that those of the disk

generally. (For the bar to be linked dynamically to the dwarf spheroidals, as dis-

cussed in the next section, the bar’s angular velocity will have to be very small:

Ω < 300km − s−1/200kpc.)

The ends of the bar (r = rB) are a secondary source of potential that may

be important in generating spiral arms. Typically the arms originate at the ends

of a bar and begin their outward spiral in approximately the azimuthal direction.

It is dynamically impossible for a single star to make the 90o bend from bar to
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arm. However, it is quite possible for the accumulation of stars at rB to provide

the potential needed to focus the exterior (and radially confined) disk stars which

move in orbits having r > rB).

The end of the bar may resemble more a plane than a point. The potential

near a plane varies as sin(2π∆r/λo) and thus has a nearest minimum at r − rB =

3λ/4. The potential near a point varies as −cos(2π∆r/λo) and has a minimum at

r − rB = λ. Since the end of the bar is at r ≃ (N + 3/8)λ, the minimum in the

near potential produced by the bar will be on the axis of the bar at a radius of

r/λo between N + 1 + 1/8 and N + 1 + 3/8. The effect of the bar will then be

to focus stars around the radius r/λo = N + 1 + 1/4 which is approximately the

central radius for circular orbits.

There is a possibility for feedback if the focal point is at the opposite end of the

bar (∆φ = 1/2 cycle) or indeed if the focus is at any integral number of half-cycles.

The accumulation of matter at the ends of the bar needed to focus the nearby disk

stars after 1/2 a cycle is not large. A simple application of the impulse approxima-

tion shows the needed mass to be (1/2π)2(r/λo)Meff , where Meff is the effective

central mass of the galaxy. Accumulation of disk stars at the focal points will tend

to depress the potential at the ends of the bar, r = rB. Ultimately, there is nega-

tive feedback as the peak at r = rB becomes shielded by the preceding peak. For

small depressions, however, the feedback can be positive. This happens when the

spectrum of energies of the stars in bar is a rapidly decreasing function of energy.

Then the loss in the number of stars being reflected is more than compensated by

an increase in dwell time of those that remain. That the feedback can be positive

initially and negative ultimately would seem to be an ideal circumstance for the
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formation of bars.

The formation of spiral arms that trail from the ends of the bar can also be

understood. The arms begin as density enhancements at the focal points in the

largely circular orbits that pass close to the ends of the bar. Because of feedback,

these focal points are also near the ends of the bar. At radii more that a few λo

beyond the bar, the bar’s ends appear as point sources of an oscillating force which

decreases as 1/|r − rB|. But the length along the orbit over which the phase of the

force is coherent increases as r−rB. In the impulse approximation, the two factors

cancel, leaving a focal point which is a constant distance as measured along the

arc of the orbit. This constant distance corresponds to an angle which diminishes

as r increases.

3.3.4 Central Bar & Dwarf Spheroidals

The dwarf spheroidal galaxies are the few small ellipticals that orbit the Milky

Way at radii between 60 and 220 kpc. Kunkel and Demers (1976) and Lynden-

Bell (1976) observed that these galaxies are roughly in a plane perpendicular to

the galactic disk and that the same plane includes the small and large Magellanic

clouds. The origin of this “Magellenic Plane” is still not well understood (Majewski

and Cudworth 1993; Mateo et al 1991).

The cosinusoidal potential may furnish a dynamical explanation. The Mag-

ellenic Plane is perpendicular not just to the galactic disk; it is perpendicular to

the central bar as well. When viewed from the north galactic pole, the axis of the

bar is about 16o clockwise of the radius vector from the galactic center to the sun

(Binney et al 1991). All eight spheroidals and the two Magellanic clouds are within

29o of the plane perpendicular to this bar. If we allow the ten satellites to specify
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the best fitting plane, they are all within 24o of a plane which is perpendicular to

a bar that is 9o clockwise. (See Fig. 13 and Table I, where the angle between the

satellite and best fitting plane is called A).

A dynamical link between central bar and distant satellites is ridiculous for the

Newtonian potential. But the link is sensible for the cosinusoidal potential. Here

the weighting factor jn(r/2πλo) favors central matter over distant as a source for

a multipole moment n. Additionally. the distant effect of all multipoles is in phase

and falls off simply as 1/r. The total potential (bar plus disk) factors into the

product of radial and angular parts,

φ(~r) = Ψ(b, l)(−cos(2πr/λo)/r). (28)

Earlier we saw that coherent radial enhancements in the density distribution within

the disk would maximize Ψ in the plane of the disk. Similarly, matter within the

bar maximizes Ψ in the plane perpendicular to the bar’s midpoint. This latter

maximum provides a channel in which the loosely bound dwarf spheroidals can

move without being ripped apart by tidal forces. Because of the disk, Ψ is not

a constant around the channel, but rather increases from pole to equator by a

factor equal to the number of Legendre polynomials needed to describe the disk.

In section 3.2.4 we estimated that number to be ≈ 4.

The angular dispersion of the dwarf spheroidals is consistent with the bar as

the source of the potential “channel”. Reasoning familiar from physical optics

shows that all matter within a bar of length 2a acts coherently on distant objects

within an angle of arcsin(3λ0/4a) of the median plane. Taking 24o for this angle,
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we find that the effective (not total) radius of the bar is 1.8 λo or 1000 pc. (See

Fig. 12).

Qualitative confirmation of the potential channel is also given by the position

angles of the major axes of the spheroidals. These generally are elongated in a

direction parallel to the Magellanic Plane. Specifically, the position angles of the

five faint spheroidals, Ursa Minor, Draco, Carina, Sextans, and Leo II, are within

26o of the direction of the Magellanic plane. The three bright spheroidals, Sculptor,

Fornax, and Leo I, have position angles at larger angles as is evident in Table I.

In the absence of dark matter, the faint spheroidals have smaller mass and

self-gravity than the bright. The faint are thus the better tracers of the Galactic

potential. This fact will be important as we now consider the orthogonal sides of the

potential channel, namely those formed by the radial variation, −cos(2πr/λo)/r.

It is this Galactic radial factor which enables all the faint dwarf spheroidals to

have an observed radial velocity dispersion near 7 km/s. A simple scaling argument

lets us infer the expected dispersion at the mean radius of the faint dwarfs from

the observed dispersion of stars near the sun,

σdwarfs = (1/2)σstars(rdwarfs/rstars)
−1/2 = (1/2)(40)(110/8.5)−1/2 = 6km/s.

(29)

(The factor 1/2 reflects the decrease of Ψ by a factor of 4 from the galactic pole to

the disk.)

The Galactic Newtonian potential lacks the oscillating radial factor. Here the

dwarf spheroidal is bound with enough internal dark matter to balance the kinetic

energy associated with the dispersion in the velocities. The difficulty is that an
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uncomfortable amount of dark matter is required, particularly for the faintest

dwarfs, Ursa Minor, Draco, and Sextans. Estimates of the required M/L vary, but

most give values above 40 times that of the sun. To my knowledge, no one has

heeded the admonition of Gerhard and Spergel (1992) and given an explanation

for the source of so much localized dark matter.

The observed velocities of the spheroidals offers another test of the cosinusoidal

potential. Here, in distinction to the Newtonian case, the dwarf spheroidals must

be in essentially circular orbits, each confined within ∆r ≃ λo. Both the spatial

radial and azimuthal velocities of the spheroidals are limited. They can contribute

estimated maximal amounts to the observed heliocentric radial velocities RVobs of

∆vr = (600/2)[(4/2π)(λo/rdwarf )]1/2 (30)

and

∆vθ = (600/2)cos(60o)(ro/rdwarf ). (31)

Here 600 km/s is taken as the escape velocity from the galaxy, which we have

conservatively derated by a factor of 2 to account for the fragility and the polar

orbits of the dwarf spheroidals; 60o is the minimum angle between vθ and ro. A

final contribution to RVobs is RVsun as computed from the dwarf’s position and

the generally assumed solar motion with respect to the galactic center, (u, v, w) =

(9, 231, 6km/s) (Jones, Klemola, and Lin 1994).

The test is whether, particularly for the faint spheroidals, the maximal contri-

butions from the dwarf’s unmeasured spatial motions can account for the difference
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between the observed radial velocity and the solar contribution. The answer, evi-

dent from Table I, is clearly negative. For example, for Ursa Minor, |RVobs−RVsun|

= 87 km/s, whereas ∆vr +∆vθ is only 40 km/s. To achieve reasonably good agree-

ment, it is necessary to assume that the azimuthal velocity of the sun is about 300

km/s (rather than 231).

It is important to understand that this radical change is not so bizarre when

seen in the context of a cosinusoidal potential. The conventional value is based

on a solar velocity of 6 km/s relative to a local standard of rest (LSR) having a

circular velocity of 225 km/s. The concept of a circularly moving LSR of velocity

Θ(r) which varies slowly across the disk is naturally compatible with Newtonian

dynamics. But the concept is foreign to this proposal. Here strictly circular mo-

tions are permissible for only 1/4 of the available space. At all other positions,

including that of the sun, radial motions are a necessity. These are combined with

any of whole range of azimuthal velocities to yield stable orbits. There is no single

LSR.

The distinction between the two dynamics is most evident in Oort’s constants

A and B which are generally used to determine both Θ(ro) and dΘ/dr evaluated at

ro (Mihalas & Binney 1981). The classical analysis of Fricke (1967) is intentionally

limited to stars farther than 100 pc from the sun and results in dΘ/dr = −(A+B) <

0. This result conflicts with the result in section 3.3.1 above that for stars within

25 pc of the sun the mean azimuthal velocity actually increases with increasing

radius.

We return now to the question of whether the observed radial velocities of the

dwarf spheroidals are consistent with their being in nearly circular orbits. Using
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an adopted value of 300 km/s for the azimuthal velocity of the sun we form a

somewhat arbitrary figure of merit

FM = |RVobs − RVsun|/(∆vr + ∆vθ). (32)

For a satellite to be radially confined, FM ≤ 1. The results, shown in Table I are

positive for the faint dwarfs and for the Magellanic clouds, but not for Sculptor,

Fornax, and especially Leo I. The last is often regarded as escaping from the

Galaxy. A more modest hypothesis could apply to the first two. The two bright

dwarfs have both a large self-gravity and a radial velocity which (in distinction to

the clouds) is determined by measurements of just a few tens of stars. Further these

stars are not representative, but are giants. Imagine that Sculptor, say has stars

in two adjacent shells, but giants in only one. The interaction potential between

the two shells could give the giants a radial velocity greater than that allowed by

the Galactic potential alone. The maximum value of this interaction potential is

4GMdwarf/λo. Assuming a M/L ratio of 4, the potential could contribute 30 km/s

to the radial velocity of Fornax and 17 to Sculptor.

There is no evidence that the faint dwarfs spread to more than one shell. For

Ursa Minor and Sextans there is even evidence that stars are largely confined to

a single shell. Star density profiles from the automated APM facility have been

published for these two (Irwin & Hatzidimitriou 1993; Hargreaves et al 1994).

These profiles show dips at r ≃ 250pc, as expected from the cosinusoidal potential.

3.3.5 Globular Clusters

Any gravitational theory must account for the motion of Population II stars

as well as the more numerous Population I stars. As compact, massive, and old
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conglomerations of Population II stars, the globular clusters provide a good test of

the cosinusoidal potential. The test is particularly crucial since globular clusters

are generally thought to be moving as bees around a hive; ie, in deeply penetrating

orbits without much preference for the galactic disk. At the end of this section

I offer some evidence against this Newtonian picture. Let us begin, however, by

employing the methods of the last section to see that the observed radial velocities

of the clusters are consistent with their being in nearly circular orbits.

Unlike the dwarf spheroidals, the galactic clusters are at galactic radii both

less than and greater than ro. They also are not confined to polar orbits in a

particular plane. Thus, in constructing a figure of merit FM for the clusters, we

shall use different estimates of the maximum possible contributions from radial

and azimuthal motions:

∆vr = 600cos(α)[(4/2π)(λo/r)]
1/2 (33)

and

∆vθ = 600sin(α) (34)

. Here 600 km/s is taken as the escape velocity from the galaxy and α is the

angle subtended at the globular cluster by the sun and the center of the galaxy.

As before, the azimuthal velocity of the sun is taken as 300 km/s and FM is is

defined by eq. (32).

The sample of 114 globular clusters is drawn from Hirchfel and Sinnott (1985),

updated when possible by compilations of Pryor and Meylan (1993) and Kochanek

(1996). The distribution, shown in Fig. 14, has a suggestive break at FM = 1. The
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vast majority has FM < 1 and thus can be bound by the cosinusoidal potential.

Of the nine clusters having FM > 1, only one was discovered before 1900. That

cluster, NGC 5694, has already been considered as a cluster which may be escaping

from the Galaxy (Harris and Hesser 1976). The remaining eight clusters are so faint

that they require a modern observatory such as Palomar for their detection. These

eight are all at large radii (20kpc < r < 120kpc) and could very well not be bound

by the Galaxy. Their unbound colleagues, at even greater radii, then await 21st

century observers.

We see that the cosinusoidal potential requires that the Palomar galactic clus-

ters be of extragalactic origin. This requirement is not part of the Newtonian

potential which permits deeply penetrating orbits. Indeed the classic study of

Kinman (1959) suggests that the typical globular cluster is in an elliptical orbit of

eccentricity ǫ = 0.8. Kinman (and others) observed that the galactic clusters as

a whole are rotating with considerably less velocity than the disk. If the typical

globular cluster has the properties of the ensemble, then it has far too little angular

momentum to be in a circular orbit.

There may be a problem with this model of deeply penetrating globular clus-

ters. Even if one assumes dark matter and the Newtonian potential, the model

predicts more globular clusters with high radial velocities than are observed. It is

convenient to start with Kinman’s paper and consider the orbit of a “typical” globu-

lar cluster which at its average radius has a transverse velocity which is
√

2×69/216

of that required for a circular orbit. Kinman’s elliptical orbit calculation was made

for a point galactic mass. Alternatively, we now assume a spherically symmetric

distribution of galactic matter producing the standard potential required for a flat
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rotation curve, φ(r) = (225km/s)2ln(r). A simple numerical calculation gives the

results shown in Fig. 15.

Evidently, 1/4 of the time our typical globular cluster has a speed greater than

270 km/s. Of course it is not necessarily heading directly towards the sun. But if

we assume isotropic velocities, there should be six globular clusters (in the sample

of 114) which have a radial velocity |RV | > 270km/s. In fact there is no globular

cluster which has a RV greater than 270 km/s (after correcting the observed RV

for the standard solar motion of (9,231,6 km/s). Only seven clusters, NGC 3201,

Rup 106, M 68, NGC 5694, M 9, M 70, and NGC 6934, even have radial velocities

greater than 225 km/s.

The reader may find an explanation for the paucity of speedy globular clusters.

Dead ends that I have pursued include the following. The standard potential is

not easily truncated. It begins at r ≃ 1 kpc and (to account for an escape velocity

much greater than 225
√

2 km/s) must extend to at least 60 kpc. Concentrating all

the dark matter into the disk is also not likely to be helpful. One then replaces the

standard potential with one that depends on latitude, φ(r) = (225km/s)2ln[r(1 +

|sinb|)]. The radial component of the gravitational field gr is still independent of

latitude and (by the virial theorem) the rms speed is 225 km/s independent of

orbit. Increasing v(LSR) to 295 km/s also is of no use. Then no cluster has an

observed |RV | > v(LSR).

Perhaps the basic problem is that, even with dark matter, the Newtonian po-

tential cannot accommodate two different populations of stars into circular orbits.

Having stars with different speeds occupy essentially the same circular orbit is not

a difficulty for the cosinusoidal potential.
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3.4 Coma Cluster

The greatest need for dark matter is in systems of large size (R > 100 kpc) such

as clusters of galaxies. Indeed, the application of the virial theorem to the Coma

cluster stimulated Zwicky (1933) to introduce dark matter. He found that a mass

to light ratio 400 times that of the sun was required to explain the observed 1000

km/s dispersion in the projected velocities vp of individual galaxies. Subsequent

discoveries of a massive halo of X-ray emitting gas (of dispersion ≃ vp) and of

a reduced value for the Hubble constant have increased the stock of accountable

matter so that it is now about 10% of the dark matter. (See White et al 1993).

This conventional picture of the Coma cluster as a well-relaxed structure bound

by gravitational forces has changed recently. Biviano et al (1996) have shown that

the mean radial velocity of the galaxies within the cluster varies systematically by

500 km/s over the extent of the cluster. Colless and Dunn (1996) have found two

dominant substructures. They conclude, “It is no longer possible to use Coma as

the exemplar of a rich, regular, and relaxed galaxy cluster. Studies of the projected

distributions of both the galaxies and the X-ray gas show statistically significant

substructure on both large and small scales...”. Feretti et al (1995) find a magnetic

field which is both surprisingly large (8 µG) and surprisingly twisted (on a scale of

2.5” = 1 kpc). This work has been used by Felten (1996) to show that the dominant

energy in Coma is tantalizingly close to being magnetic rather than gravitational.

Can this confused situation be helped by using the cosinusoidal rather than

the Newtonian potential? The answer is a clear no. But understanding may come

from electromagnetism, particularly if, as argued in the Appendix, the photon is

not massless, but has a Compton wavelength, h/mγ ≡ λ1 ≃ λo.
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Let us begin by considering the energy stored in the gravitational field. As

we have seen, the cosinusoidal potential weights source masses inversely with

their distance from the center of a spherical distribution. This weighting is dis-

advantageous for systems with very large cores. The potential at a radius b

(or a) of a shell of mass M situated at a (or b) is given by eq. (19), φ =

−GM [λo/(2πab)]sin(2πa/λo)cos(2πb/λo), where a < b. The maximum value of

φ is found by being grossly optimistic and setting the trigonometric factors equal

to unity, then φmax(a, b) = GMλo/(2πab). Approximate the Coma cluster as a ho-

mogeneous sphere of radius R = Rcore = 200 kpc and density ρ = 4×10−3mp/cm
3.

Integration over b yields φmax(a) = GρλoR
2/a. Averaging 1/a over the sphere gives

for the average density of gravitational energy,

Wmax
grav =< ρφmax >= (3/2)Gρ2λoR = 10−14.7ergs/cm3. (35)

This energy is a factor of 1000 less than the energy stored in the magnetic field,

Wmag = B2/8π = 10−11.7ergs/cm3. (36)

The above expression for magnetic energy is augmented if the photon has a mass.

As shown in the appendix, there is then an added term for the stored energy which

now becomes,

W
mγ

mag = B2/8π − (2π/λ1)
2A2/8π. (37)

The vector potential A ≃ Bl, where the coherence length l may be taken to be the
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1 kpc, observed by Biviano et al (1996). Thus

W
mγ

mag ≃ (2πl/λ1)
2(B2/8π) ≃ 120(B2/8π) = 10−9.6ergs/cm3. (38)

The magnetic energy density is now comparable to the thermal,

Wtherm = (3/2)ρv2
p = 10−9.7ergs/cm3. (39)

The thermal energy is explosive. Fortunately, the signs in the expression for W
mγ

mag

are such that magnetic energies are implosive for coherence lengths greater than λ1.

Thus the rough equilibrium in the Coma cluster may be fundamentally a balance

of thermal and magnetic forces.

Clusters other than Coma should also show this balance. If gravity is unim-

portant globally, then all clusters should have extensive magnetic fields. Clusters

generally have the radio sources needed to generate such fields. True, most lack

Coma’s extensive X-ray halo, but, as Tribble (1993) observed for the Perseus clus-

ter, the absence of a halo may indicate ”not that there is no magnetic field there,

but rather than the relativistic electron population has aged and the synchrotron

emission has faded from view.”

4. GENERAL RELATIVITY

Lindley (1992) has challenged all proposers of non-Newtonian gravitation. The

new theories must be compatible with general relativity. Being compatible is not

the same as being identical. General relativity reduces to Newtonian mechanics in

the limit of small velocities and weak sources. If the latter theory is changed, the

former must be also. Indeed the first modification was suggested by Einstein in 1917
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when he added the cosmological term Λgµν to the left hand side of the fundamental

(1915) equation of general relativity, Gµν = 8πTµν . Misner, Thorne, & Wheeler

(1973) note that Gµν is forced to be the Einstein tensor GE
µν = Rµν − (1/2)gµνR

by several very reasonable requirements including that Gµν vanish when spacetime

is flat. By setting Gµν = GE
µν + Λgµν , Einstein sacrificed this last requirement to

permit a steady state universe.

The present proposal is to add both a cosmological term and a Minkowski term

to the standard theory. Thus,

Gµν ≡ GE
µν + (gµν − ηµν)Λ = 8πGTµν , (40)

where ηµν is the Minkowski metric, ηoo = −1, ηii = +1 and c = 1. The two added

terms cancel when space time is flat, thus permitting Gµν = 0 in this limit. The cost

of the explicit introduction of ηµν in the field equations is the loss of the principle

of equivalence. ηµν transforms as a tensor only for Lorentz transformations and

not for transformations between accelerated frames (Pauli 1958). Thus eq. (40)

applies only to frames which are in uniform motion with respect to the rest frame

of the universe.
8

In the non-relativistic limit, the [0,0] element of eq. (40) reduces to the scalar

Helmholtz equation,

∇2φ + k2
oφ = 4πGρ. (41)

To see this, we follow Misner, Thorne, & Wheeler and note that non-relativistically,

GE
µν → ∇2φ + 4πρ(1 − 2φ), hoo ≡ goo − ηoo → −2φ and Too → Gρ(1 − φ). Thus
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∇2φ − 2Λφ = 4πGρ. This equation agrees with the scalar Helmholtz equation, if

we identify

−2Λ = k2
o = (2π/λo)

2. (42)

The general, singular point source solution of the Helmholtz equation is given

by the cosinusoidal potential [eq. (2)]. Thus this proposal may be viewed as

usurping the role of the cosmological constant and giving it a tentative value,

Λ = −(1/2)(2π/λo)
2 .

= −0.6 × 10−41 cm−2.

4.1 Solar System Tests

Detailed test of gravitational theory are generally made in the parametrized

post-Newtonian formalism (PPN) (Nordvedt 1968). Among the many possible

gauges, the standard post-Newtonian gauge (Will 1994) is particularly felicitous.

This gauge is an inertial one, fixed in the barycenter of the solar system, and thus

is a gauge for which this proposal makes definite predictions.
9

We shall need only

the primitive (Eddington-Robertson-Schiff) version in which the sun is point-like,

spherical and non-rotating.

The effect of this proposal is to add a trigonometric factor to the expression

for the potential, leaving for the metric

goo = −1 + 2GMcos(2πr/λo)/r − 2β(GMcos(2πr/λo)/r)
2

gjk = 1 + 2γδjkGMcos(2πr/λo)/r; goj = 0. (43)

Here β and γ are the parameters usually used to express departures from general

relativity in which β = γ = 1. Observations determine that β and γ are both one
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to within about 0.1%. In contrast, the trigonometric factors differ from unity by

only (1/2)(2π AU/560 pc)2 ≃ 10−14. Thus measurements of the bending of light

by the sun or of radar transit times to nearby planets, which measure γ, would

have to be improved by 1011 to see the effect of λo.

The prospects for influencing β are more hopeful. The term in goo measuring

the perihelion shift of mercury is only quadratic in the potential. A non-zero λo,

however, will alter the linear term. Thus this proposal gives

|β−1| ≃ (2πr/λo)
2(GM/r)−1 = (T/λo)

2 = (0.24yr/1800yr)2 = 0.25×10−7. (44)

Unfortunately, this value is still about a factor of 3000 smaller than the sensitivity

for β which could be achieved by a mercury orbiter (Bender, Ashby, and Wahr

1995).

4.2 Gravitational Radiation

The shortening of the period of the binary pulsar is a well known consequence of

the emission of gravitational radiation. Present observations and general relativity

agree at the level of 0.8% (Damour & Taylor 1991). As shown below, this agreement

is not compromised by my proposal.

Within the framework of linearized gravity and the now obligatory Lorentz

gauge,11 the effect of the added term in eq. (40) is simple. We must add a corre-

sponding term to the gravitational wave equation (Misner, Thorne, and Wheeler

1973) which for propagation in a vacuum now becomes

[−∂2/∂2t + ∇2 + (2π/λo)
2]h̄µν = 0, (45)

where h̄µν = hµν−(1/2)hηµν and hµν = gµν−ηµν . The frequency ν and wavelength
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λ of the plane wave solutions satisfy the characteristic equation

λ−2 = ν2 + λ−2
o . (46)

Because of the added term, the propagation speed approaches unity only in the

high frequency limit. In general, the phase velocity vp ≡ νλ = ν(ν2 + λ−2
o )−1/2.

The group velocity vg = 1/vp > 1 at all frequencies.

The departure of vg from one has only a minor direct effect on the rate of

gravitational radiation from the binary pulsar. This rate is inversely proportional

to v5
g (Weber 1961). For an 8-hour period, ∆vg = (1/2)(8 h/1800 yr)2 = 10−12.5.

Thus the effect of λo = 1800 lt yr is to decrease the expected rate of decay by

roughly a part in a trillion. This change is comparable to the expected fractional

effect of λo on the precession of the periastron of the binary system.

4.3 The graviton as a tachyon

The departure of vg from unity is evidently too small to be directly observable

for the binary pulsar (or indeed for any source of gravitational radiation of period

< 1800 yr). Nonetheless, the fact that vg > 1 would make the graviton the only

known tachyon, a particle which travels faster than light. We shall see that this

fact may have implications for the stability of the graviton.

A short review of tachyons may be appropriate. At first their existence was

deemed impossible. Einstein (1905) argued that to accelerate matter past the speed

of light would require infinite energy. Tolman (1917) added a causality paradox: if

tachyons existed, it should be possible for you to send them to an accomplice on a

receding planet and have him return the tachyonic signal before you sent it. The
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first objection was removed and the second ameliorated by Bilaniuk, Deshpande,

and Sudarshan (1960). They noted that infinite energies would not be required if

tachyons always moved faster than light. Further any Lorentz transformation that

changes the sign of time will change the sign of energy as well so that Tolman’s

paradox could be avoided if the only tachyons which can be detected are ones with

positive energy. The publication of a quantum theory of spinless non- interact-

ing tachyons (Feinberg 1967) encouraged several, unfortunately fruitless, searches

(Kreisler 1973; Clay 1988).

The graviton would seem to be an ideal candidate for a tachyon. In the present

proposal its velocity is always greater than light. Further it represents a perturba-

tion of space-time itself. Thus the direction of time should be fixed by Hawking’s

criterion: time increases in the direction of the increasing local area of black holes.

As a consequence, the energy of the tachyon in any frame should be positive.

If the graviton is a tachyon, its energy-momentum equation is given by the

quantum version of eq. (46): p2 = E2 +µ2, where the tachyon’s “mass” parameter

µ ≡ h/λo. For high energies, p ≃ E and v ≃ 1; at low energies E → 0, p → µ,

and v → ∞. This peculiar energy-momentum characteristic makes it possible

for an energetic tachyon to decay into itself and an ordinary particle (bradyon),

t → t + M . It is easy to use energy-momentum conservation to determine the

threshold for this unique process. Initially one has a tachyon of energy Et, and

momentum (E2
t + µ2)1/2. In the final state the tachyon has transferred all of its

energy to the bradyon. The threshold, as first found by Feinberg (1968), is

E2
t = M4/4µ2 + M2. (47)
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The mass parameter µ is so small that enormous energies are required to produce

bradyons of ordinary mass. (For instance Et = MPlanck is required for M ≃

100 eV). But there is an exception if M = 0. There is nothing to keep even a

low-energy tachyon from decaying into itself and a photon,

t → t + γ. (48)

Unfortunately, neither Feinberg (nor anyone else) has developed a quantum theory

of interacting tachyons. Thus there is presently no way to calculate a transition

probability for eq. (48), a process unique to tachyons. We can, however, use

dimensional analysis to make an estimate. Since both the tachyon-graviton and

the photon couple directly to space-time, the transition rate should be independent

of G or e. Further the rate should vanish if either Et or µ = 0. The simplest choice

is that the rate is proportional to the geometric mean of Et and µ. With this

choice, the mean free path for the decay of the graviton is related to its wavelength

λ by

λdecay = const.(λλo)
1/2, (49)

where const. is a number of order unity.

The prospect of gravitons decaying to photons in flight encourages a spec-

ulation. Perhaps this is the mechanism whereby gamma-ray bursters avoid the

optical depth problem. Bursters are thought to arise from neutron stars either in

the galactic halo or at cosmological distances. Their luminosity requires a very

high optical depth for γ + γ → e+ + e−; yet, the spectra show no evidence for a

break at Eγ ≃ 1 MeV (Harding 1994). I conjecture that the observed photons be-

gin their life as partially coherent gravitons. These could conceivably be produced
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during the violent superfluid vortex unpinning process that may occur during neu-

tron star glitches (Epstein 1988). The calculated MeV energy scale of the binding

of vortices to the nuclear crystal lattice (Link, Epstein, and Baym 1993) is quite

reasonable. Yet to be estimated is the amount of coherence which vertex unpinning

could generate.

We have seen that a tachyonic graviton is a necessary consequence of the theory

proposed here. A related question is whether the photon might be bradyonic. This

question is discussed in the Appendix.

4.4 Gravitational Lenses

The deflection of light by galaxies offers tests of the cosinusoidal potential.

Since the peculiar velocities of candidate lenses are non-relativistic, the only im-

portant term in the stress-energy matrix is Too and the deflection will be given by

the usual formula (Young et al, 1980)

~α = 2

∫
~∇φdl, (50)

where ~α is the vector deflection angle. Now however, the potential is cosinusoidal

rather than Newtonian.

Let us compute the expected deflection for a light ray incident on a point mass

mass M at an impact parameter b in a flat Euclidean space,

α = 4b

∞∫

b

dr(dφ/dr)/(r2 − b2)1/2, (51)

where α is the scalar bending angle, directed towards the galaxy. For the cosinu-
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soidal potential, eq. (3), we have

α = 8πGM(b/λo)

∫
dr(sin(2πr/λo) + (λo/2πr)cos(2πr/λo))/(r(r

2 − b2)1/2).

(52)

This is not an integral which can be done exactly. However, the singularity at

r = b in the denominator suggest an approximation where only the first half cycle

of the first term contributes and everything else is ignored yielding

α ≃ 8π(GM/b)(2b/λo)
1/2sin(2πb/λo) (53)

This approximation has been tested numerically. It is valid for b > (1/2)λo. In

particular, maximum bending is achieved when b/λo is a little greater than N ,

an integer. In addition to the sine factor, eq. (53) differs from the Newtonian

expression by the factor (b/λo)
1/2. This enhances the probability of gravitational

lensing by strong, but distant sources, such as clusters of galaxies, and thus may

be responsible for the arcs seen in the Abell clusters, for some features of the

”venerable one” (0957+561), and for the large separation between images in the

“lens without a lens”(2345+007). (The quotations are from Schneider et al (1992)).

To make a quantitative test of the sine factor, we need a nearby lens, one

which can be observed with good resolution. We also need to generalize eq. (53)

to an extended source. This extension is easily done in the case of a spherically

symmetric deflecting galaxy which obeys the “galactic building principle”. In that

case, all matter contributes to a sinusoidal (dφ/dr) but with different weights. One

then substitutes an Meff for M in eqs. (52) and (53). Meff is the sum of the core

contribution, the contribution from matter at r < b diminished by the weighting
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factor (λo/2πr)sin(2πr/λo) and the contribution from that matter at r > b whose

projected mass is interior to b. The case of a source quasar which is slightly off the

axis formed by the viewer and the galaxy is handled by the graphical method of

Young et al (1980). The result, shown in Fig. 16, is that, even for off-axis sources,

significant magnification occurs only when b ≃ Nλo.

The nearby lens is provided by the Einstein Cross (2237+0305) (Huchra et

al, 1985). Four images are nearly centered in the middle of a spiral galaxy whose

red shift is only 0.0394. The probability of having such a pattern at such a low

z is so low that it has been described as “a unique case” by Schneider et al. The

four images are at radii of 0.922”, 0.970”, 0.762”, and 0.881” (Rix et al 1992).

The average of these radii is 0.884”. Compare this average with that calculated

assuming b = λo,

θ = (1.08λo/zdHo)(1 + zd)
2/(1 + (1/2)zd), (54)

where λo =560 pc, zd = 0.0394, the factor 1.08 results from the numerical integra-

tion of eq. (52) for a point source, Meff , and Hubble’s constant is assumed (as it is

throughout this paper) to be 75 km s−1 Mpc−1. The small correction factors arise

from the assumption, justified later, of an open (Ω = 0) universe. The calculated

θ is 0.84”, in too good agreement with the measured value. The fact that there

are four images, rather than a complete ring and that the images do not all have

the same radii probably results from plausible features of the galaxy: a quadrupole

moment and a slight offset between the center of mass and center of luminance.

There should be more tests for our principle that a necessary condition for

gravitational lensing is that b = Nλo. Schneider’s book (Schneider Table 2.1,
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1992) lists 22 gravitational lenses. But if we skip arcs, which are generally caused

by clusters of galaxies, there are only two additional lenses that are both caused

by a single galaxy and close enough to be adequately resolved. These are the radio

galaxies MG1549+3047 and MG1654+1346. The radio jet which is the source for

the former system is evidently too diffuse to be of much use, but the hot spots in

the jet behind MG1654+1346 have produced two rings which are most intriguing.

The rings (shown in figure 2 of Langston et al, 1990) are quite accurately semi-

circles of radii in the ratio 2:1 centered upon the galaxy. Nominally, the rings have

radii of 4λo and 8λo, (for an assumed λo=620 pc), but since the resolution of the

VLA ≃ λo at the galaxy’s red shift of 0.25, we cannot use this as a test of our

putative value of λo. The intriguing feature is that this is a lens where Newtonian

mechanics has evidently produced a poor fit. The calculated images of the hot

spots shown in figure 3 of Langston are not semi-circular, nor do they have radii

in the observed ratio of 2:1.

Measurement of the time delay between these two rings should offer a clear

test of the cosinusoidal potential. This is because the contribution of the potential

to the time delay

δtpot =

∫
φdl = π(GM)(2b/λo)

1/2cos(2πb/λo) (55)

is vanishingly small. The time delay is reduced from the Newtonian because the

integrand contains the oscillating potential itself, not its gradient.

We are left with the geometric contribution to the time delay,

∆t = H−1
o (1 + zd)(DdDs/2Dds)(~θ − ~β)2 (56).
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Since the images are semicircles, the angle between the optic axis and the source β

is much smaller that the angle between optic axis and image θ. Thus the difference

between the time delays for the larger and smaller rings is simply

∆t = (3/4)H−1
o (1 + zd)(DdDs/2Dds)(θ

2
B) = 25 days (57)

To evaluate this expression, we take the redshifts of the galaxy and lens to be

zd = 0.254 and zs = 1.75. The distances D are then calculated in an open universe

using the standard formulae (eg. Young 1980). The diameter of the larger ring θB

is measured from fig 2 of Langston to be 1.44”. The predicted time delay has not

yet been measured.

4.5 Cosmology

Unlike the Yukawa or Newtonian potentials, the sign of the cosinusoidal poten-

tial oscillates. This alternation leads to the curious property that a potential which

is attractive at short distances is, on the whole, repulsive at large. The repulsion

is far too small to be relevant for the present universe, but can have cosmological

consequences.

To see the effect of the alternation, consider the potential at the center of a

homogeneous sphere of radius R,

φ = −4πGρ

R∫

o

cos(2πr/λo)rdr

= −(Gρλ2
o/π)[−1 + cos(2πR/λo) + (2π/λo)Rsin(2πR/λo)] (58)

The last two terms oscillate and tend → 0 as R → ∞ if ρ is subject to a soft cut-off

(such as ρ → ρe−br, 1 << bλo). The first term, however, is constant and opposite
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in sign to that expected from the Newtonian potential. The result, φ = (Gρλ2
o/π),

is clearly consistent with the scalar Helmholtz equation for constant ρ.

Since φ is of the same sign as ρ, the effect is inflationary; the universe will

tend to expand to lessen the stored gravitational energy. A quantitative measure

is given by the energy stored per unit volume,

W = ρφ = +Gρ2λ2
o/π (59)

Substituting the present value of the density of baryons for ρ; namely, 1.4 ×

10−7nucleons/cm3 (Peebles 1993; Walker et al 1991), we find Wo = 3×10−27ergs/cm3.

This value is very small compared to the mass-energy stored in the baryons directly,

2×10−10ergs/cm3 or to the energy stored in the 2.7 K radiation, 4×10−13ergs/cm3.

The relation between the gravitational, thermal, and mass densities is altered

dramatically at earlier times. This is because the gravitational density varies as

ρ2 and thus will increase with red shift as (1 + z)6 until z ≃ 1000 at which point

radiation dominates over matter and the increase in gravitational energy goes as

(1 + z)8. The result, shown in Fig. 17, is that at (1 + z) ≃ 105, the gravitational

energy dominates.

The spacing between the two circled cross-overs in Fig. 17 should provide

enough time for inhomogeneities in nγ to relax to the smooth Cosmic Background

Radiation seen today. Alternatively, the time for nucleosynthesis (point f) is earlier

than the time when the whole universe has expanded to a horizon of λo. Thus the

gravitational fields at the critical time of nucleosynthesis should be unaffected by

this proposal.
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This domination is expected in fluctuations of gravitational energy over a scale

length of λo as well as in the mean. (Clumping of mass should occur because only

implosive gravitational forces act on all matter within an isolated, homogeneous

sphere of radius R < λo/4. See eq. (58). There is some evidence that these

primordial fluctuations have left observable relics. Fluctuations in present galactic

densities have been reliably observed at a continuum of repetition lengths up to 30

Mpc (Peebles, 1993) and even longer (Da Costa et al 1994). Particularly intriguing

is the specific repetition length of 128 h−1
o Mpc. discovered by Broadhurst et al

(1990). Assume this length expands with the universe. Then at a lookback redshift

of z = 105.5, a little earlier than the end of a gravitation dominated universe, the

present structure would have had a length of 560 pc, the putative value of λo. (See

point B in Fig. 17).

The newly discovered ”chain galaxies” also may evidence a repetition length,

this time of λo itself. Cowie, Hu, and Songaila (1995) have discovered a new class

of objects at redshift z ≃ 1. The objects appear as chains of length 2” - 3” and

“blob separations of 0.5” or several times larger.” For an open universe, a transverse

length of 560 pc asymptotically approaches 0.58” as z → ∞. As Cowie et al note, a

chain is not a stable structure (assuming Newtonian gravity). For the cosinusoidal

potential, a chain (in distinction to a two or three dimensional lattice) is stable.

Consider a linear chain with 2N+1 identical masses m each spaced a distance λo

from its neighbor. The potential at the center is (−2Gm/λo)(ln(N) + 0.577..).

Similar expressions apply at the site of each mass and even for the case where

some sites are vacant. Since the potential varies only logarithmically with N, the

binding is weak.
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Finally, note that the cosinusoidal potential is incompatible with a critically

closed universe. The oscillations reduce the desired Ω = 1 by a factor ≃ −(λoH
−1
o )2;

the avoidance of dark matter gives a further 10−2 reduction leaving Ω ≃ −10−16.

(The assumption Ω = 0 has already been used here in the confirmation of the

bending of light by the Einstein Cross and, more significantly, in the predicted

time delay between the arcs in MG 1654+1346 and in the discussion of chain

galaxies).

4.6 Real Sinusoidal Potential

The Helmholtz equation for a point source M also has a non-singular, sinusoidal

solution, of the same wavelength as the cosinusoidal one,

mφ(r)s = −(GsmM/r)sin(2πr/λo). (60)

Present observations are consistent with Gs = 0. Unfortunately, a tight limit

cannot be given. This is because only the gravitational field is measured directly.

For sensitive solar system measurements, the effect of Gs on the field is reduced by

the ratio (R/λo)
3 relative to that of the ordinary G. In galaxies, measurements of

rotational velocities are presently poor enough that all one can say is that Gs <∼ G.

The deflection of light in the Einstein cross gives evidence against the sinusoidal

potential, allowing a somewhat tighter limit, Gs <∼ 0.1G.

The present proposal is that Gs = 0. There is, however, a possible roll for an

imaginary sinusoidal potential. The possibility that such a potential distinguishes

matter and antimatter is discussed in the following paper. Ironically, the imaginary

potential helps the present proposal as well. It provides an explicit manifestation

of the violation of the equivalence principle in eq. (40).
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5. CONCLUSION

Several astronomical observations support the concept of a cosinusoidal poten-

tial with a universal length λo. Three, the shells of NGC 3923, the distribution of

lens diameters, and the Einstein Cross give a tentative value for λo. Hopefully this

proposal will encourage further observations and analysis, particularly of shells and

of gravitational lenses. To understand the implications for singularities, such as

black holes, it will be necessary to extend the relativistic theory beyond the simple

linear gravitation offered here.

There are several ways to falsify this proposal. One could find shells separated

by distances of 1/2 λo or 3/2 λo. Equivalently, it is sufficient to find a rapidly

rotating homogeneous disk which ignores the beginning of the first forbidden zone

at 250 pc. The globular clusters could be proven really to be on deeply pene-

trating orbits. (To do so would require that proper motions be measured directly

with respect to external galaxies). Finally, the time delay in a gravitational lens

(with impact parameters ≫ λo) could by shown to require a contribution from the

potential as well as from the geometry.

If this proposal is correct, the current extensive search for MACHOS might

change its focus. Looking towards the Magellanic clouds is, at present, vital to the

discovery of the nature of Galactic dark matter. This outward search is irrelevant

to the cosinusoidal potential which weights interior sources more than exterior.

Here the search towards the Galactic bulge may find the central baryonic dark

matter which allows the Galaxy to have such a high escape velocity.

6. HISTORICAL NOTE
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The idea of an oscillating potential perhaps originated with the Milano Croa-

tian Jesuit philosopher Ruder Boskovic (1711-1787). Boskovic attempted to find

a single force that could unify atomic, terrestrial, and astronomical phenomena.

Martinovic (1987) summarizes Boskovic’s thesis, “The number and properties of

the flow of the curve of forces depend on the distance between the particles. The

changes are more numerous and more significant at imperceptibly small distances.

At distances corresponding to the distances between the planets the form of the

curve approaches the hyperbola of the second degree −1/xx and at the greatest

distances, like those between fixed stars or their distance from us, the curve can

cut the axis at any number of points....”
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8. APPENDIX - MASSIVE PHOTON

A colleague, William O’Sullivan, has observed that it is difficult for scientists to

accept a new universal length, particularly if it affects only one of the four funda-

mental forces. The roll of electromagnetism in the possible decay of gravitational

waves has already been discussed. Here I suggest that the photon itself may have
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a (real) mass and that recent evidence allows its Compton wavelength, λ1 ≡ h/mγ

to be approximately the same as the gravitational wavelength, λo = 560 pc.

This suggestion apparently conflicts with the existing lower limit, λ1 > 14 kpc

(Montanet et al 1994). Chibisov (1976) established this value from the observed

stability of the Small Magellanic Cloud. He argued that the known forces which

act on the SMC are all explosive. These are thermal and magnetic pressures as

well as centrifugal forces. The only available implosive force is provided by a

massive photon of reduced Compton wavelength comparable to the 3 kpc extent

of SMC. Not considered was a roll for gravity. But this roll could be provided by

the enhanced implosive gravitational forces considered in the present proposal.

Thus it is prudent to consider that Chibisov’s limit might not be valid. The

general approach of looking for a balance of forces is, however, very valuable. Let

us first look at this balance in a situation where non-electromagnetic forces provide

the basic equilibrium, and the magnetic field configuration has merely to be stable.

This is the case for galactic magnetic fields.

The condition for stability is readily found from the magnetic part of Maxwell’s

stress tensor, a tensor which must be changed if the photon is massive. To the usual

terms in the magnetic field B, we add terms in the vector potential A (Chibisov

1976) to arrive at

4πTM
ij = BiBj − (2π/λ1)

2AiAj − (δij/2)(B2 − (2π/λ1)
2A2). (61)

For stability TM
ij = 0. Equilibrium can be achieved if B = ∇× A = ±(2π/λ1)A.

To satisfy the stability condition, B must be parallel to A, everywhere. Addition-
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ally, the wavelength of the spatial variation of B should equal the Compton wave-

length of the photon. The first condition is the familiar one of “force free fields”,

J × B = 0. These are found in solar flares, but there the spatial variation in B is

so marked that the terms in A are inconsequential. The lines of B are in tension,

but this tension is overwhelmed by the expansive pressure of the B2 term (Parker

1979). We shall be interested rather in galactic magnetic fields where the second

condition may also be satisfied.

The planar solution for force free fields of wavelength λ1 is simply Ax =

Aosin(2πz/λ1); Ay = Aocos(2πz/λ1). This solution has constant Ax and Ay over

any plane z = const., and has positive helicity H ≡
∫

B.Adv. (The complementary

negative helicity solution is Ax = Aocos(2πz/λ1); Ay = Aosin(2πz/λ1)). To obtain

a force free field having components in all three directions we add two planar fields

of different directions, arbitrary amplitudes, but the same wavelength and helicity.

For example, adding a planar (x) solution yields,

Ax = Aosin(2πz/λ1); Ay = Aocos(2πz/λ1) + A1sin(2πx/λ1); Az = A1cos(2πx/λ1).

(62)

In practice Ao and A1 can vary slowly with r, (|∇Ai| << 2πAi/λ1).

Recent observations indicate that the dominant magnetic fields both in M31

(Urbanik, Otmianowska-Mazur, and Beck 1994) and in the Galaxy (Rand & Lyne

1994) are in equatorial rings rather than along spiral arms. To see the form of

the predicted stable configuration, we simply substitute cylindrical coordinates

for Cartesian in eq. (62). Thus x → r − ro, y → rφ − rφo and z → z − zo.

(Since 2πr >> λ1, the evaluation of the curl is unaffected by using curvilinear
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coordinates).

It is intriguing that Urbanik et al offer evidence that the field in M31 is domi-

nantly helical with a pitch angle of about 30 degrees and a spacing between helices

of a few hundred pc. Both features are consistent with eq. (62). Measurements in

our own galaxy are not so far advanced, but indicate a reversal in the direction of

the azimuthal field at a radius 400 pc closer to the center of the Galaxy than the

sun. Perhaps both galaxies are approaching stable configurations.

The influence of a massive photon on the relaxation time of galactic magnetic

fields was investigated by Williams and Park (1971). They set a lower limit (λ1 >

6 lt yr) from the observation that the local galactic field is at least 106 years old.

They assumed the field to be solenoidal (and directed along a spiral arm). We may

turn their analysis around to state that if λ1 really is 560 pc, an initial field having

B ⊥ A will decay to the stable configuration in about the lifetime of the universe.

The fact that a field with B ‖ A is more stable that one with B ⊥ A was first

discussed in a classic review of massive photons (Goldhaber and Nieto 1971).

Finally, the same generalized Maxwell stress tensor (eq. (61)), though not

the force-free plane wave solutions (eq. (62)) may be used in more complicated

situations, such as the Coma cluster.
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REFERENCES

1. Bouwkamp(1947) was evidently the first to show that the Yukawa family

of potentials (Yukawa, Newton, and cosinusoidal) permits one to represent

the potential outside a homogeneous sphere as the product of a unit point

potential and an effective mass. Sneddon and Thornhill (1947) proved that,

of all possible central potentials, members of the Yukawa family are unique

in having this desirable property. The extension to multipoles is, I believe,

new to this paper. This extension can apply to the Yukawa potential itself

if modified spherical Bessel functions are used and thus, may be helpful in

revivals of finite length anti-gravity (FLAG) (Sanders 1984) or the fifth force

(Fischbach et al 1986).

2. Neighboring choices for φo also give a minimum near 5.34: viz, for φo =

1/2 cycle, χ2 = 26 at ro = 5.38, for φo = 3/4 cycle, χ2 = 27 at ro = 5.25

3. Our previous concern that some disk galaxies are expanding rapidly (Bartlett

& Pike 1990) has been retracted (Bartlett & Pike 1993).

4. The reader may find evidence of this clumping by viewing the bound volume

obliquely from the side.

5. As Sanders (1990) observed, alternative theories of Newtonian gravity which

add a Yukawa term to the usual Newtonian gravity (Sanders 1984) cannot

explain why MN/M is roughly independent of the size of the galaxy. Also

see Kenmoku, Okamoto, & Shigemoto (1993).

6. Finding a truly face-on galaxy is difficult because the ratio of the minor

and major axes gives one only the cosine of a small angle. The problem is
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illustrated in Tully’s Catalogue (1988). Of the approximately 1500 tabulated

disk galaxies, none has a measured inclination < 15o; only 13 have inclinations

< 20o.

7. The reader is cautioned that there is some arbitrariness in the drawing of

these curves. There is the critical question of the outliers. What fraction of

stars can be expected to lie outside the dynamic limits? The answer is zero

if there are no measurement errors or binaries and the galaxy is like the solar

system, enduring unaltered for many revolutions. But the galaxy is dynamic;

blue stars evolve to supernova in a fraction of a revolution. The resulting

hydrogen gas collides inelastically with stars, possibly altering the radial

distribution of matter slightly so as to change the effective monopole Meff .

Further study is clearly needed, particularly since recent observations have

shown that old galaxies look very different from new. [A. Dressler (1993)].

8. Measurements can still be made in an accelerated frame (such as an earth-

bound laboratory) if the internal accelerations within the local clock are large

compared to the acceleration of the laboratory with respect to the comoving

inertial frame. This is the case for nuclear and atomic clocks (Isaak 1970).

9. This proposal makes use only of Lorentz gauges, both here and in the

Appendix, where the possibility of a massive photon is considered. This

curtailment of the usual freedom is a direct consequence of the fact that,

even in the non-relativistic Helmholtz equation, the potential itself is directly

observable. One cannot add an arbitrary constant as can be done in New-

tonian mechanics. Since g = −∇φ, the Helmholtz equation may be written

as k2
oφ = 4πGρ + ∇ · g, thus permitting the determination of an absolute φ
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from measurements of the local ρ and g.
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FIGURE CAPTIONS

FIG 1. Galaxy NGC 3923. Prieur’s measurementa of maximum of shell radii

vs fitted N of cycle using rN = (N + φo)ro; φo = 5/8 cycle; ro = 5.34”

a Column 5 of Table 3 of Prieur 1988.

FIG 2. NGC 3923. χ2 vs ro for a fixed φo=5/8 cycle.

FIG 3. Periodicity of Lens Radii. Nwt vs λo75. The scale for the abscissa

has been multiplied by 2/3 from that obtained directly from Kormendy’s data.

This corrects for the fact that he assumed a Hubble constant of 50 km/s/Mpc

rather than the 75 assumed here. The cross-hatched interval is the value of λo as

determined by the elliptical NGC 3923 using either Prieur’s or Tully’s estimate

of the distance to that galaxy. The arrows at smaller wavelengths mark where

expected harmonics of 560 pc should occur.

FIG 4. Number of stars in 10 km/s intervals for 1946 stars in CNS3R. Radial,

azimuthal, and z-velocities wrt galactic center are -u, v, and w respectively.

FIG 5. Normalized effective one-dimensional potential φu vs radius in cycles

r/λo. Curves given for normalized angular momenta Lu = 1.25, 2.2514.25. Also

shown are possible positions for the sun assuming for (vescape, v⊙): Top dot -

(460,300); center dot (680,300) or (510,231); bottom dot - (1200,300)(Non-spherical

potential; escape velocity out of plane of disk assumed to 600 km/s).

FIG 6. Envelopes of permissible azimuthal velocities vφ vs radial velocity vr for

seven r/λo between 14 5/8 and 15 3/8. Permissible velocities are under envelopes.

Solid Curves have vertices at inner turning points; dashed at outer. Bold curve

corresponds to possible radius for the sun. All velocities normalized to global
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escape velocity vφ(max).

FIG 7. Scatter diagram of u and v velocities of stars in CNS3R. Curves are

envelopes expected for different combinations of (vescape, v⊙): Solid (460,300), Dash

(510,231), Dot (680, 300), Dot-Dash(1200,300) (Noncentral potential).

FIG 8. Differential histograms of azimuthal velocities v. (a) N+ stars more

than 6 pc further away from center of galaxy than sun. (b) N− stars more than 6

pc closer to center of galaxy than sun. (c) N+ − N−.

FIG 9. Differential histograms, N+ − N−. (a) For stars |rstar − rsun| > 12 pc;

(b) 6 pc < |rstar − rsun| < 12 pc and (c) |rstar − rsun| < 6 pc.

FIG 10. Potential close to a point source mass. Circular orbits allowed only in

regions marked
⊙

. No bound orbits allowed in regions marked “No”. Unmarked

intervals can have radially confined, but non-circular orbits.

Fig 11. Circular velocity vs radius for M31 (from Table in Rubin & Ford).

Markers a (250 pc) and b (380 pc) show limits of first forbidden region. Dashed

curve: 1/r falloff expected by angular momentum conservation for matter which

escapes from radius a.

FIG 12. Potential close to an extended source. Bound stars having radial

amplitudes > λo confined to r < rB. Orbits more likely to stop at r = rA.

FIG 13. Magellanic Plane shown as a projection of a celestial sphere viewed

along the axis of the central bar.

FIG 14. Globular Clusters. Histogram of Number vs Figure of Merit, FM .

Clusters having FM > 1 in ascending order: Pal 15, AM-1, Rup 106, Pal 2, Pal 3,

NGC 5694, Pal 1, Pal 14, Eridanus.
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FIG 15. Typical globular cluster in a field gr ∝ 1/r. Average v = 225 km/s.

Solid curve: speed, Dotted: vr, Dashed: vθ.

FIG 16. Deflection angle α vs. Image displacement angle θ for light from a

quasar Q not quite on axis of intervening galaxy. Image occurs whenever line in-

tersects solid curve. Since magnification is inversely proportional to angle between

curve and line, only detectable images are a points of tangency, as illustrated for

positive θ.

Fig. 17. Mean energy density of universe W vs radiation temperature T =

2.76K (1+z). 0 = present. Gravitational energy dominates before the early circle;

after late circle mass dominates. Characteristic temperatures indicated. f: fusion of

deuterium and light elements, H: λoHo = 2.76K /T , B: 128 Mpc ×2.76K /T = λo.
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