
Solutions HW4 - Phys 7810-001

03/18/21 due 04/08/21

Problem 1 [80 pts]
Generalized BRST quantization of gauge theories. In class we obatained the path integral for
a gauge theory based on the deWitt-Faddeev-Popov method. This showed us that the ratio
Z[Φ]/Z[1] with Φ a product of gauge invariant operators, can be defined by fixing the gauge so
that the volume of the gauge group cancels between the numerator and denominator leaving
us with well-defined path integrals. The resulting expression is (after factoring out the gauge
group volume and an irrelevant constant),

Z =

∫
[dφ][dc][dc+]Ω[φ]eic

+α.M β
α .cβ− i

2ξfα.κ
αβ .fβ ,

where I’ve used Ω[φ] = eiS[φ]Φ[φ], with φ being the full set of physical fields (those that define
external states - may be gauge fields, matter fields both bosons and fermions but not ghosts).
The only property of Ω that we need is that it’s gauge invariant i.e, Ω[φg] = Ω[φ] as is the case
with the measure (defined as we did in class). fα is the gauge fixing function and M β

α (x, y) is
the matrix we defined in class. We’ve also used a condensed notation so that repeated indices
are summed over the discrete values of the gauge index as well as integrated over space-time.
Thus for instance

c+α.M β
α .cβ ≡

∫
x

∫
y

c+α(x)M β
α (x, y)cβ(y),

etc. καβ is an invariant metric on the gauge group which for compact groups may be taken to
be δαβδ4(x − y) but again all we need here is that it is gauge invariant. Observe that up to
an irrelevant (field independent) constant we can write

Z =

∫
[dφ][dc][dc+][dh]Ω[φ]eic

+α.M β
α .cβ−ihα.fα[φ]+i ξ2hα.κ

αβ .hβ (1)

This follows from doing the Gaussian integral over hα.
Ghost number: Assign +1 to cα, -1 to c+

α and zero to all other fields. Clearly the gauge
fixed action

S[φ] + c+α.M β
α .cβ − hα.fα[φ] +

ξ

2
hα.κ

αβ.hβ (2)

conserves ghost number
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0.1 [30 pts] Killing vectors

a) [10 pts] Define the Killing vector field
−→
Kα[φ] = K i

α[φ] δ
δφi . Show that the commutator

[
−→
Kα[φ],

−→
K β[φ]] = (K i

α[φ]Kj
β,i[φ]−K i

β[φ]Kj
α,i[φ])

δ

δφj
. (3)

Here Kj
α,i = δ

δφiK
j
α. Note that this diffential operator implements an infinitesimal transforma-

tion on the fields:
δθφ

i = δθαK i
α.

This is just an exercise in functional differentiation. Using the condensed nota-
tion defined above we have

[
−→
Kα[φ],

−→
K β[φ]] = [K i

α[φ]
δ

δφi
, Kj

β[φ]
δ

δφj
] = K i

α[φ]
δ

δφi
Kj
β[φ]

δ

δφj
−Kj

β[φ]
δ

δφj
K i
α[φ]

δ

δφi

= K i
α[φ]Kj

β[φ],i
δ

δφj
+ K i

α[φ]Kj
β[φ]

δ

δφi
δ

δφj

−Kj
β[φ]K i

α[φ],j
δ

δφi
−Kj

β[φ]K i
α[φ]

δ

δφj
δ

δφi

=(K i
α[φ]Kj

β,i[φ]−K i
β[φ]Kj

α,i[φ])
δ

δφj

In the last step we used the commutativity of functional partial derivatives.
Note that the above is true even if some of the fields φ are fermionic though in
that case one needs to keep track of the signs but you can check that it works
though not required for this problem.

b)[10 pts] If this is an invariance of the action then we must have:
−→
KαS[φ] = 0. (4)

Show that then
(K i

α[φ]Kj
β,i[φ]−K i

β[φ]Kj
α,i[φ])

δ

δφj
S[φ] = 0 (5)

From (4) it follows that
−→
K β
−→
KαS[φ] = 0 and

−→
Kα
−→
K βS[φ] = 0 and hence

[
−→
Kα,
−→
K β]S[φ] = 0. Using (3) the result follows. Show that if this is true off-shell (i.e.

is even when δ
δφjS[φ] 6= 0) and the set

−→
Kα are a maximal set of symmetries which leave the

action invariant (and are independent of the action) then the algebra is closed:

[
−→
Kα[φ],

−→
K β[φ] = c γ

αβ [φ]
−→
K γ[φ]. (6)

2



i.e. there is a non-linear constraint on the K’s,

(K i
α[φ]Kj

β,i[φ]−K i
β[φ]Kj

α,i[φ]) = c γ
αβ [φ]Kj

γ[φ]. (7)

This follows since if K ′αs are a maximal set of symmetry generators then their
commutator (which is also proportional to a δ/δφ) must also be some linear
combination of the K ′s. In other words the operator acting on S in eqn. (5)
must be a linear combination of the form c γ

αβ [φ]
−→
K γ[φ] (with c γ

αβ [φ] = −c γ
βα [φ])

where in general the structure constants may be field dependent. Thus we get
eqn. (7). The independence w.r.t. the action is required since otherwise one
can write down a term which is dependent of the action (while being linear in
the derivative operator) but still annihilates it.

c) [5+5 pts] Show that there is another constraint

c δ
[αβ c

σ
(δ)γ] − ~K[αc

σ
βγ] = 0, (8)

where the instruction [...] on the indices means that the expression is summed over cyclic
permutaions of the three indices. .

This follows from the Jacobi identity [
−→
Kα[φ], [

−→
K β[φ],

−→
K γ[φ]]]+cyclic permutations = 0

and the relation (7).
If the symmetry is linearly realized (i.e. δθφi = iδθαtiαjφ

j with [tα, tβ] = if γ
αβ tγ, find the

K’s and show that c γ
αβ [φ] = if γ

αβ . i.e. the c’s are field independent. This remains true for
Yang-Mills gauge transformations on gauge fields (which have an inhomogeneous piece) as
well as for gravity (diffeomorphisms), but not for example in supergravity.

If the action of the symmetry is of the form δθφ
i = iδθαtiαjφ

j then K i
α =

itiαlφ
l, K i

α,j = itiαj and so the LHS of (7) becomes

i2
(
tiαlφ

ltjβi − t
i
βlφ

ltjαi

)
= φl

(
tjαit

i
βl − t

j
βit

i
αl

)
= φl[tα, tβ]jl = φlif γ

αβ it
j
γl = f γ

αβ K
j
γ.

Comparing with the RHS of (7) we have c γ
αβ = if γ

αβ .

0.2 [50 pts]BRST charge.
a)[10 pts] Define the Slavnov operator,

S = cαK i
α

δ

δφi
− 1

2
cβcγcαβγ[φ]

δ

δcα
− hα δ

δc+α
. (9)
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Note that this operator has ghost number +1. A BRST transformation is defined to be the
action of θS where θ is a Grassman number (so θ2 = 0) on the set of fields {φi, cα, c+α, hα}.
Show that the gauge fixed action can be written as

Sgf = S[φ] + SΨ[φ, c, c+, h], (10)

where the so-called gauge fixing fermion (with ghost number -1) is given by

Ψ = c+αfα[φ]− 1

2
ξc+
ακ

αβhα. (11)

Let us work out SΨ. First note the following results.

Sφj = cαKj
α, Scα = −1

2
cβcγcαβγ[φ], Sc+α = −hα, Shα = 0.

We also have
−→
Kαf

β(φ) = Kγ
αf

β
,γ ≡ Mβ

α . Thus we have S + SΨ[φ, c, c+, h] =

S + c+α.M β
α .cβ−hα.fα[φ] + ξ

2hα.κ
αβ.hβ which is the gauge fixed action of eqn.

(2).
b) [15 pts] It turns out that any gauge theory once it is gauge fixed can be written in

the form of eqn. (10) with Ψ an arbitrary (i.e. not necessarily of the form (11)) fermionic
functional of ghost no. -1. You don’t need to prove this here (for a proof see for example
Weinberg Quantum Theory of Fields vol 2 page 40). Using the relations for the Killing vector
derived in subsection 0.1 show that the Slavnov operator is nilpotent. i.e.

S2 = 0

This is a straightforward exercise using the fermionic nature of c, c+ and the
Jacobi identity relation relation.

[05 pts] Use the above to conclude that θSSg.f. = 0. This shows that the gauge fixed action
(although it’s not gauge invariant any more) is nevertheless BRST invariant.

This is a global (i.e. space time independent since θ is a constant Grassmann
number) symmetry of the action. Note that any gauge invariant functional of
the physical fields φ is automatically BRST invariant i.e.

θSΩ[φ] = 0.

The invariance of the SΨterm follows from the nil potency of S.
d) [10 pts] Show that the measure in the functional integral (1) is BRST invariant. i.e. if

we defined the BRST transformed fields as Φθ = Φ + θSΦ where Φ = {φ, c, c+, h), show that
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the Jacobian has determinant unity. i.e.

det
δΦθ

δΦ
= 1.

For the diagonal Jacobian matrix elements we have

δc′α

δcδ
= δαδ −−θcγcαδγ,

δA
′α

δAβ
= δαβ + θcαβγc

γ.

We have assumed that the structure constants are independent of the fields here
for simplicity. This is the case both for Y-M and GR.

The off-diagonal terms are proportional to θ. The Jacobian matrix J is block-
diagonal. We have for the A, c submatrix[

1 + θ(−iTγ)c
γ O(θ)

O(θ) 1 + θ(−iTγ)c
γ

]
.

The c+, h submatix is [
1 0

1 1

]
Note that the matrix is of the form 1 + O(θ). Since θ2 = 0 the expansion of
the log has only one term - linear in θ. Hence we get

ln detJ = Tr lnJ = 2TrTγc
γ = 0⇒ detJ = 1

e) [05 pts] Show that the operator iS is Hermitian (recall that c, c+ are real Grassmanian
fields) when defined with respect to the functional inner product

(Ξ′,Ξ) =

∫
[dΦ]Ξ

′∗(Φ)Ξ(Φ).

Hermiticity is the property

(iSΞ
′
,Ξ) =

∫
[dΦ]

(
iSΞ

′
(Φ)
)∗

Ξ(Φ) =

∫
[dΦ]Ξ

′∗(Φ)iSΞ(Φ) = (Ξ′, iSΞ).

But inside the above functional integral we can do integration by parts. So we
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can write the the operator on the RHS as

−i

{
cαK i

α

←−
δ

δφi
− 1

2
cβcγcαβγ

←−
δ

δcα
− hα

←−−
δ

δcα+

}

= −i

{←−
δ

δφi
cαK i

α −
1

2

←−
δ

δcα
cβcγcαβγ −

←−−
δ

δcα+
hα + cαK i

α,i − cβδγαcαβγ

}
.

But the last two terms are zero since K i
α,i = 0 from the gauge invariance of the

measure over the physical fields (use invariance of metric ||δφ||2 or the explicit
expression for K in a gauge theory for example) and since cαβα = 0. Hence the
result follows.

f) [05 pts] The above holds for any gauge theory from Y-M to gravity and supergravity. In
other words if one has a set of symmetries ~Kα under which the action is invariant and which
form a closed algebra, the gauge fixed action is of the form (10). Define the BRST charge
operator Q̂ acting on a Dirac ket or bra state as < Φ|Q̂|Ξ >= iSΞ(Φ) where |Φ > is an
eigenstate of the set of field operators Φ̂, in other words Ξ(Φ) =< Φ|Ξ > is the representation
in the field space basis of the ket vector |Ξ >. Clearly the nilpotency of S implies that Q̂2 = 0.
Physical states may now be defined as states in the BRST cohomology, i.e. if |Ξ > is a physical
state ˆQ|Ξ >= 0 i.e. it is BRST closed. Note that this is an equivalence class i.e. you can add
any BRST exact state (i.e. a state Q̂|any > to a physical state and it still satisfies the above
condition). Show that the S-matrix for the scattering of physical states, is independent of the
gauge fixing, i.e.

δΨ < α; out|β; in >= 0.

We have (either from the path integral representation of the matrix element or
from Schwinger’s action principle

δΨ < α; out|β; in >=< α; out|
∫
SδΨ|β; in >= −i < α; out|

[
Q̂, δΨ

]
|β; in >= 0

if |α >, |β > are phsical states.
g) To see the meaning of the physical state condition one could consider its

effect on states in a gauge theory. See for example the discussion on pp 33-34 in
Weinberg Quantum Theory of Fields vol 2 or on pp 453-455 in Sredinicki QFT.
One can also show using BRST methods that the quantum effective action
in background gauge invariant gauges (see Lec5) not only satisfies background
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gauge invariance but also is gauge fixing independent at its extrema i.e solutions
of δΓ/δφ = 0 are independent of ξ.

Problem 2 [20 pts]
In class we derived the form

U (1)
n = −1

2

∫ ∞
0

ds

s
tre−V

′′
(φc)s

1

(4πs)n/2

for the one-loop contribution to the effective potential in n dimensions. a) [10 pts] By rewriting
the integral in terms of a Gamma function show that in the limit ε ≡ 4−n→ 0 this expression
takes the form

limε→0U
(1)
4−ε = −1

2
tr

(V′′)2

(4π)2

1

2

(
2

ε
− γ + ln(4π)− ln

V′′

µ2
+

3

2
+O(ε)

)
.

where µ is an arbitrary scale factor (called the renormalization scale). In the so-called MS
subtraction scheme, one adds the counter term

δS =
1

2

∫
d4x
√
gtr

(V′′)2

(4π)2

1

2

(
2

ε
− γ + ln(4π)

)
,

to the original action (with couplings defined at the mass scale µ) so that we have for the
one-loop corrected quantum effective action (1PI action to one-loop)

Γ1PI ' Sclassical(µ) + lim
ε→0

(
δS + Γ

(1)
4−ε

)
= Scl(µ) +

1

2

∫
d4x
√
gtr

(V′′)2

(4π)2

1

2

(
ln

V′′

µ2
− 3

2

)
(12)

b) [10 pts] Consider a scalar field theory with two fields, one a light field with mass m and
another with a heavy field with mass M . The potential for the theory is

V (φ,Φ;µ) = Λcc(µ) +
1

2
m2(µ)φ2 +

1

2
M 2(µ)Φ2 +

λ(µ)

4!
φ4 +

η(µ)

4
φ2Φ2 +

σ(µ)

4!
Φ4 + . . .

The β-functions are obtained by demanding that U is independent of the arbitrary scale µ.
Derive the flow equations for the cosmological constant and the purely φ dependent couplings:

µ
dΛcc

dµ
=

1

32π2

(
m4 +M 4

)
(13)

µ
dm2

dµ
=

1

16π2

(
λm2 + ηM 2

)
(14)

µ
dλ(µ)

dµ
=

3

16π2

((
λ2 + η2

))
(15)
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From an effective field theory point of view if M � m we would have expected that effect of
the heavy field to drop out of the light field beta functions in the regime µ � M . However
we see in the above that this does not happen. Can you explain this?

In dimensional regularization one may start with the D dimensional version
of the proper time representation eqn. (??) but without the cut-off in the
s-integral, i.e.

Γ
(1)
D = −1

2

∫ ∞
0

ds

s

∫
dDx
√
gtre−V

′′
(φc)s

1

(4πs)D/2

= −1

2

∫
dDx
√
g

1

(4π)D/2

∫ ∞
0

ds

s
s−D/2tre−sV

′′
= −1

2

∫
dDx
√
g

1

(4π)D/2
tr
(
V
′′
(φ)
)D/2 ∫ ∞

0

dtt−D/2−1e−t
′

= −1

2

∫
dDx
√
g

1

(4π)D/2
tr
(
V
′′
(φ)
)D/2

Γ(−D/2)

= −1

2

∫
dDx
√
gtr

(V′′)2

(4π)2

(
Γ(2−D/2)

D/2(D/2− 1)

(
µ2
)(D/2−2)

(4π)D/2−2
e
(D2 −2) ln V

′′

µ2

)
In the above we’ve introduced and arbitrary mass scale µ and used the integral
representation for the Gamma function Γ(z) =

∫∞
0 e−ttz−1dt. WritingD = 4−ε

and expanding in a Laurent series in ε we get (see for example Peskin and
Schroeder [?] eqns. (11.77,78))

Γ
(1)
4−ε = −1

2

∫
d4x
√
gtr

(V′′)2

(4π)2

1

2

(
2

ε
− γ + ln(4π)− ln

V′′

µ2
+

3

2
+ O(ε)

)
,

where µ is an arbitrary scale factor. In MS one adds the counter term

δS =
1

2

∫
d4x
√
gtr

(V′′)2

(4π)2

1

2

(
2

ε
− γ + ln(4π)

)
,

to the original action (with couplings defined at the mass scale µ) so that we
have for the one-loop corrected quantum effective action (1PI action to one-
loop)

Γ1PI ' Scl(µ) + lim
ε→0

(
δS + Γ

(1)
4−ε

)
= Scl(µ) +

1

2

∫
d4x
√
gtr

(V′′)2

(4π)2

1

2

(
ln
V′′

µ2
− 3

2

)
(16)
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In our toy model the classical potential is,

V (φ,Φ;µ) = Λcc(µ) +
1

2
m2(µ)φ2 +

1

2
M 2(µ)Φ2 +

λ(µ)

4!
φ4 +

η(µ)

4
φ2Φ2 + . . .

and the field dependent mass matrix is

V′′ =

[
m2 + λ

2φ
2 + η

2Φ2 ηφΦ

ηφΦ M 2 + η
2φ

2

]
. (17)

The β-functions are obtained by demanding that Γ1PI is independent of the
arbitrary scale µ. Writing out this equation for the effective potential we get

0 = µ
d

dµ
V1PI = µ

dΛcc

dµ
+

1

2
µ
dm2

dµ
φ2 +

1

4!
µ
dλ(µ)

dµ
φ4 + . . .

− 1

2
tr

(V′′)2

(4π)2
. (18)

tr
[
V
′′
]2

=
(
m4 + M 4

)
+
(
λm2 + ηM 2

)
φ2 +

1

4

(
λ2 + η2

)
φ4 + . . . (19)

Hence we may read off the flow equations for the couplings:

µ
dΛcc

dµ
=

1

32π2

(
m4 + M 4

)
(20)

µ
dm2

dµ
=

1

16π2

(
λm2 + ηM 2

)
(21)

µ
dλ(µ)

dµ
=

3

16π2

((
λ2 + η2

))
(22)

Let us focus on the cosmological constant. Integrating the first equation
between MKK and cosmological scales µ � m we get (after generalizing to
include also fermions and gauge bosons - not required)

Λcc(µ� m) = Λcc (MKK) +
1

64π2
Str
(
m4 + M4

)
ln

(
µ2

M 2
KK

)
(23)

There is no decoupling of high mass states from the low mass beta function
eqns since in obtaining these eqns we integrated over all scales.

The following three problems will not be graded. I’m including them since you might find it useful to try
them out. The first two are essentially from Sredicicki and the last one is from Peskin and Schroeder. I will
discuss a generalized version of the last one when we discuss anomalies.
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Problem 3

[30 pts] In class we discussed the quantization of Non-Abelian gauge theories
and in particular derived the Feynman rules for a class of Lorentz invariant
gauges. Here you should proceed in the same manner (i.e. using the Faddeev-
Popov (FP) method) to quantize in a class of non-covariant gauges - defined
by the gauge fixing condition nµAµ = 0 where nµ is a fixed but arbitrary 4-
vector (for example in the so-called axial gauge a.k.a. Arnowitt-Finkler gauge
nµ = ηµ3). Derive the Feynman rules in this gauge (you only need to work
out those which are different from what we had for the covariant gauges in
class). Show that the FP ghosts are non propagating and that only physical
degrees of freedom of the gauge field propagate. (Although the gauge fixing is
non-covariant the S-matrix is still Lorentz invariant. In this sense it is similar
to the Coulomb gauge in QED.

Problem 4

(40 pts)
Wilson line:
Consider the Wilson line integral i.e. the path ordered line integral

WP (x1, x0) = P exp

{
igS

∫
dt
dxµ

dt
Aµ(x(t)

}
. (24)

Here Aµ = Ai
µTi (with Ti the generators of some gauge group in some represen-

tation R), and path ordering implies that in the expansion of the exponential
the products of A′s is ordered in the t - i.e. it is “time ordered” in t which
parametrizes some curve in space time. Find the solution to the “parallel prop-
agation” equation

Dtψ(x(t) =
dxµ

dt
Dµψ(x(t)

where Dµ is the covariant derivative in the representation R under which ψ

transforms. Hence show that the Wilson line transforms under gauge transfor-
mation A→ Ag as

WP (x1, x0)→ g(x1)WPg
−1(x0)
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where g(x) is the gauge group element in the representation R at the point x.
Deduce that the Wilson loop integral

WC = trP exp

{
igS

∮
C

dt
dxµ

dt
Aµ(x(t)

}
where the integral is taken over a closed path is gauge invariant.

For U(1) gauge theory show that the vacuum expectation value of the Wilson
loop is

< 0|WC|0 >= exp

[
ig2
s

∮
C

dxµ
∮
C

dyν∆µν(x− y)

]
where ∆µν(x − y) = ηµν/

[
4π2(x− y)2

]
is the propagator for the gauge field

Aµ in Feynman gauge. The integral is divergent because of the singularity as
x → y. By cutting the integral off at a length scale a show that the integral
takes the form

< 0|WC|0 >= exp

[
−cg

2
s

a
L

]
where L is the length of C.

By taking C to be a circle of radius R = L/2π evaluate the constant c.
Remember that the integral should be cut off when |x− y| < a.

Problem 5

[30 pts]
The (Abelian) anomaly equation is

∂µj
µ
5 = − g2

16π2
εµνλσFµνFλσ.

a) By integrating this over space time show that

∆NR −∆NL = − g2

2π2

∫
d4xE.B. (25)

Here ∆NR,L is the change in the number of (right/left handed) fermions in
a time interval. b) Show that the Hamiltonian for massless fermions may be
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written in the form

H =

∫
d3x

[
ψ†R(−iσ.D)ψR − ψ†L(−iσ.D)ψL

]
,

with Di = ∇i − ieAi. c) Consider the eigenvalue problme for ψR i.e. the eqn.
−iσ.D)ψR = EψR. Choose the E-M potential to be Aµ = (0, 0, Bx1, A) with
A,B being constants. Then the eigen vectors can be written as

ψR =

(
φ1(x1)

φ2(x1)

)
ei(k2x

2+k3x
3).

Show that the functions φi obey the harmonic oscillator equation. d) I the
system of fermions is in a box with side of length L and periodic boundary
conditions, the momenta k2,k3 will be quantized ki = 2πni/L. From the eqn
derived in part c) show that the condition that the center of the oscillation is
inside the box leads to the condition k2 < gBL and that each energy level
has a degeneracy eL2B/2π. e) Consider the effect of changing the background
by ∆A = 2π/gL. Show that the vacuum loses right-handed fermions and by
repeating the analysis for left-handed fermions that the vacuum gains the same
number of left handed fermions and that the net change is in accord with (25).
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