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Problem 1
1) (30 pts) The kinetic term lamauqbi for N real scalar fields is inariant under

T
Eglr(s)}l]lrf)lrln E ¢ZVVflen chéﬂ s ‘éven thls gr%pwc%eggags (ghe suﬁ)gro%}i)e & W?f)t
U(N/2). For N = 4 define the complex basis of fields ¢ = \/5(¢1 + i), P =
Lz(cbg + i¢4) and construct the 2 x 2 complex matrix

(e ¥
@—(w—w*>

In terms of this observe that the reality condition on the fields ¢; translates
to the condition (i)® = e®*c = ® (¢ = i0,) and the O(N) invariant form is
(13) " ¢ = —2det® . Show that these conditions (i), (i¢) are preserved by
a)® — UP,
byd — V.
for arbitrary unitary matrices U, V' with unit determinant. This shows by ex-
plicit construction that O(4) is actually equivalent to SU(2) x SU(2). Some-
times these are referred to as left /right SU(2)’s since the first/second acts by
multiplication on the left /right. 2) (10410 pts) Consider a theory with one Ma-
jorana fermion 7 and two real scalar fields ¢, x subject to the transformations
0 — wysY, dp — 2wy, dx — —2wp
for w an infinitesimal constant parameter. Write down the most general renor-

malizable (i.e. with operator dimension less than equal to four) for this set of
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fields. Identify the vacuum (i.e. potential minimum) field configuration and
mass spectrum both in the broken and unbroken phases (i.e. for both choices
of sign for the coefficient of the the quadratic term of the potential). Couple a
vector field to this system by constructing the appropriate covariant derivatives
and find the action for this system that is invariant under local gauge transfor-
mations (i.e. w such that d,w # 0). Identify the spectrum in both the broken
and the unbroken phases.

Problem 2

(40 pts)

a) If H is an SU(2) doublet show that so is eH*. b) Show the equiva-
lence of the two forms of the standard model kinetic terms. i.e. show that
%) y*D,(v°), = Yry*Dybr. c¢) Derive from the gauge invariant kinetic
terms of the Higgs Lagrangian after spontaneous symmetry breakdown, the
mass terms for the W and the Z bosons. d) Define the four by four matrix of

Higgs fields
1 1 (H*H*
d=—(H" H)=— :
(1)
Show that we can rewrite the Higgs Lagrangian as
LHiggs = tr(Du(I))T(DM‘I)) - V(®)
2

V(®) = Atr®'® — %)2

/
D,® = 8M<I>+iga.WM<I’ = z'%Buq)ag

The action of SU(2); x U(1)y on @ is then (with UzeSU(2)r, SU(2).: ® —
U@, Uy — Pe939/2 Check directly the invariance of L riggs in the above
form under this group action. e) Show that in the limit ¢’ — 0 this Lagrangian
has a global symmetry SU(2)g : ® — ®U},, UreSU(2)g. In other words
in this limit the Higgs sector has the approximate accidental global symmetry
SU2), x SUQR)g : & — UL@U};. f) Show that after spontaneous symmetry
breakdown this global symmetry broken to SU(2)p+g : ® — UL<I>U1T-J. g)
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Show that W transforms as a triplet under global SU(2); and a singlet under
SU(2)g. How does W transform under SU(2)1.z? What does this tell us about
My, and Mz? Note: This global symmetry is called the “custodial symmetry”.
g) Show that the ¢, Yukawa couplings have a custodial symmetry in the limit

my = my.
Problem 3

(40 pts)

a) Show that in the standard model there is no non-trivial CKM like matrix
for the lepton sector. Hence deduce that there are two additional I7 (1) symme-
tries for the leptons - i.e. a lepton number associated with each generation. b)
Let us now extend the standard model to include a (right-handed) Dirac field
Npr and add the Yukawa interaction ALy ukowa = — f;‘lBLfeH*N;Z. How should
Np transform under SU(2); x U(1)y? What is its lepton number? b) Given
that neutrinos actually do have mass one may want to add this field and this
term to the Lagrangian. But since neutrino masses are of O(1073eV) how big
can the above Yukawa coupling be? Do you think it is OK to have such & value
in your Lagrangian? c) Show that gauge invariance allows a Majorana mass
term —3 MAB(NA)TCNE + h.c.. However note that it violates lepton number.
d) As an alternative to adding a new field, consider looking at higher dimension
operators to generate neutrino masses. So we introduce some high scale M (this
could be a scale at which new physics appears). There is then a dimension 5
operator that will contribute to giving a neutrino mass term

AB

L5 = Cﬁ(Lf)TeHCHTeLLB +he.

i) Show that L5 is gauge invariant, and that ¢*? is a symmetric matrix and
that this term violates lepton number. it) Find the effective neutrino mass
term coming from the Higgs effect on L5. Assuming that the dimensionless
coupling ¢ ~ O(1) how big must M be in order to generate neutrino masses
at the observed values. Can you associate this value with some other physics
that you may have heard of? i) Show that the analogue of the CKM matrix
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in the lepton sector has six physically relevant parameters (remember that cA2
is a complex symmetric matrix).



(iv) O(2) invariance requires that Lagrangian terms must be invariant under such arotation.

This means that ¢ and ¢* must appear an equal number of tlmes in-each term, and

so forces
mi=mi, M=DMXy, Ag=2X (1.8)

Denoting m? = m2 = mZ and A = A\; = ), the resulting Lagranglan is

= [@utn)? + 0T (@2 + )] + (@ red)’s
= OO L A ' (1.9)

-L

There are two cases, de pendlng on the sign of m2. If m? >4 vacuum is ¢ = ¢ =0
g

and both partlcles have mass m.

If m? < 0: rhe vacuum is whatever field values miinimize the potential. This is not
unique )mt by field redefinition (precisely a roratlon by some angle §) we can take it

}f/ b1 = \‘f—mz /)\ and ¢ = 0. The s ared masses for the two particles then are

= —2m? > 0 and m2 = 0. With this"choice, ¢ is the Goldstone boson.

N =4 case
(i) The most general form for the Lagrangian is

~£=33 [(8,»@ +m2¢?] + 2 A gz (1.10)

(ii) Defining v2p = ¢ + igho and v21) = 5 + i, we must show that the matrix
o=|% ¥ (1.11)

v -
persists in satisfying
O =edc¢ = O, (1.12)
1

det® = —p'p— 4" = —- 479 (1.13)

under the transformations ® — U® and & — &V, with U, V being unitary matrices

having unit determinant. Here ¢ = ig».

The relation involving the determinant is trivial since the determinant of a product of

matrices is the product of the determinants:

det (U®) = (det U)(det ) = det & (1.14)
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(ii)

and similarly for ®V.

For the property involving ®, note first that because € = oy, we have —e? = 1, so
U® = eU*®*e = —cU*c eD*e (1.15)

and it is sufficient to show that —eU*e = U for SU(2) matrices. This is so because an

SU(2) matrix can be written as

U=uwl+id-i¢, wl+id-d=1 (1.16)
and because the Pauli matrices satisfy
020%0y = =G (also, oglop =1). (1.17)
Using these with € = 705 then gives,
—eU%e = 0oU*03 = 02(ugl — 4+ i )oy =upl + 4 -0 = U . (1.18)
Therefore
U®d = cU*®%e = —eU*c ed*e = Ued*e = UD (1.19)

as desired. Exactly the same argument goes through for V.

Now we consider the case with invariance under only one SU(2), with x — Ux and
X — Uy, where ¥ = ex™.
First, observe that only one of the SU(2)-invariant combinations, xtx, ¥Tx, and ¥'%,

is independent because

. P+ PE+p3+¢3 _
%= x'x = %3@54 — 'y, and Iy =0. (1.20)

Therefore the quadratic parts of the Lagrangian can be written only using ; the most

general form is
A,x10"x + m?xTx . (1.21)

Now it remains to compute the most general quartic piece. Besides the obvious term,
A(x"x)?, one might think of the following alternate terms, involving Pauli matrices, &:

(x'ex)?, 'e®, (x'ax) - (xlax). (1.22)



0

1.4 Symmetries and Yukawa interactions
The symmetry transformations are

Op =iwys, Sp=2wx, Ox=—2wp, (1.46)
for real scalars ¢ and y.

1. Problem 1.2 shows how this symmetry constrains the purely scalar part of the Lagran-

gian, with the allowed purely scalar terms
1 A 2
L =~ [0u00"p + 0x0"x +mP(9*+x°)] — (@) (1.47)

Now, for the terms with fermions. Only Yukawa interactions are allowed by renormal-
izability. Once a field redefinition is performed to put the kinetic terms into canonical

form the most general terms possible then are

L1 = =5 (T8 + ) + baTro + cxib + exxl + expTovd + et

(1.48)
These transform under the symmetry as
(v du) = 0,
S(Wy) = 2iwpysy,
S(Pyst) = 2w,
S(edy) = 2w(xPY +ipPysi) ,
Sxdy) = 2w( — P+ ixsy),
5(eprsy) = 2w(xPrst + i),
Soyse) = 2w( - Pt +ixdy) . (1.49)

No term can compensate for the shift in the first two terms, so b; = by = 0. The
remaining terms can cancel in pairs if ¢4 = ¢¢; and ¢3 = —icy. Further, Hermiticity
demands that ¢; and ¢, are real, and c; and ¢, are imaginary; so this is consistent.
Therefore, there are two real parameters for the Yukawa interactions, and the remaining

allowed terms are

Ly = —% 9780 + 1 (0w + ixtbysth) + o2 (X — ipys)] - (1.50)






Because 1) is purely real and 9ys¢ is purely imaginary, this can be succinetly rewritten
in terms of one complex coefficent ¢ = 1/2(¢; — icy) and the complex field ® = (p +

ix)/ \/51 ]

Ly=—3 (970,00 — (c@ PP + cc)] (1.51)
where (c.c.) means complex conjugate, and is the same as taking twice the real part
of the first term. We see that, in general, Yukawa couplings are complex when written
this way.

To obtain the spectrum requires treating separately the cases m? > 0 and m? < 0.

If m* > 0, then the scalar potential is minimized by ¢ = y = 0, and expanding
the lagrangian about this configuration shows that both scalars have mass m and the

fermion is massless.

If m = —u? < 0, then the scalar potential is minimized for nonzero fields. By
appropriately rotating the fields this can be chosen to be p? = p?/) and y = 0. In
this case the squared scalar masses become mfo = 2u? and mi = 0, showing that y is
the Goldstone boson. The fermion mass is similarly my = ¢ = c1p/vV/A.

. For the gauged version, we must add a gauge kinetic term,
1 '
Ly = ~1 F,F* (1.52)

where F,, = d,A, — 0,A,, where 64, = (1/g)0,w. All derivatives must also be made

covariant derivatives, with

D@ = (9, +2igA)®,
D,Py = (0, —igAu)Puy, (1.53)
and so therefore,
D, Prip = (0, + igA,) Pri) . (1.54)
Equivalently D,% = 8,9 — 1gA,vs%, Dyup = Oup — 2gAux and Dyx = 8,x + 29A.¢.

If m? > 0, then the scalar potential is minimized by ¢ = y = 0, as before. The scalar

and fermion masses are as found above, and the gauge boson mass is zero.

If m?* = —p? < 0, then the scalar potential is minimized by ¢? = u2/X and x = 0.
In this case the scalar and fermion masses are as above, and the gauge boson mass is
given by expanding out —%(D,‘X)2 to find m, = 2g¢ = 2gu/VA.
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