HW1 - Phys 7810-001

due 02/04/21

Problem 1

[40=2+3+5+5+20 pts] The composition law of a Lie group is given by $g(\theta)g(\phi) = g(\xi(\theta,\phi) \text{ where } \theta = \{\theta^i\}, \phi = \{\phi^i\} \text{ are n-dimensional parameter vectors and } \xi = \{\xi^i\}$. Show that a) $\xi(\theta,0) = \xi(0,\theta) = \theta$. b) $\xi(\theta,\xi(\phi,\psi)) = \xi(\xi(\theta,\phi),\psi)$. c) Write

$$g(\phi)g(\theta)g^{-1}(\phi)g^{-1}(\theta) = g(\chi(\theta,\phi)).$$

Show that near the identity element $\chi^i = c^i_{jk} \theta^j \phi^k$. d) By evaluating the commutator $g(\phi)g(\theta)g^{-1}(\phi)g^{-1}(\theta)$ show that the generators satisfy the commutation relations $[X_j, X_k] = ic_{jk}^l X_l$. e) Deduce that $c_{jk}^l = -c_{kj}^l$, and that $c_{jk}^{m}c_{lm}^{n}+c_{kl}^{m}c_{jm}^{n}+c_{lj}^{m}c_{km}^{n}=0$. f) For a matrix group we define the Cartan-Killing metric on the Lie algebra by $g_{ij} = tr(X^i X^j)$. i) Show that $c_{ijk} \equiv g_{il} c_{jk}^l$ is totally anti-symmetric in i, j, k. ii) If $U = e^{iH}$ is a unitary matrix with det U = 1, show that tr H = 0. g) Let ψ, ϕ, \ldots be vectors in the space of n-dimensional column vectors ($\psi = \{\psi_a\}$ etc.) which carry an n-dimensional unitary representation of some Lie group. Suppose the group elements $\{q\}$ of a group of unitary transformations on this vector space are given in some unitary representation by the matrices D(g). i) Show that the totally anti-symmetric tensor $\epsilon_{i_1...i_N} = \pm 1$ (with upper(lower) sign for even(odd) permutations of $1, 2, \ldots, N$) is an invariant of the group SU(N). ii) Suppose the vector $\psi = \{\psi_i, i = 1, ..., N\}$ is in the fundamental (defining) representation of SU(N). Then the tensor ψ_{ij} transforms as the direct product of $\psi \times \psi \equiv \{\psi_i \psi_j\}$. Define the permutation operator P so that $P\psi_{ij} = \psi_{ji}$. Show that P commutes with the group transformation law. Show that ψ_{ij} is a reducible tensor representation by demonstrating that

the symmetric and anti-symmetric combinations $\psi_{ij}^{\pm} \equiv \frac{1}{2}(\psi_{ij} \pm \psi_{ji})$ do not mix under the group transformations.

Problem 2

[30=5+10+10+5 pts] For the Lie algebra of SU(N) show that a) $C_{ijk}T_jT_k = \frac{i}{2}C_2(G)T_i$ b) Prove the completeness relation (for the generators in the fundamental representation)

$$(T_i)_{\gamma\beta}(T_i)_{\alpha\lambda} = \frac{1}{2}(\delta_{\beta\alpha}\delta_{\gamma\lambda} - \frac{1}{N}\delta_{\beta\gamma}\delta_{\alpha\lambda})$$

c) Show that in any IR r the generators satisfy the relation

$$T_i T_j T_i = \left[C_2(r) - \frac{1}{2} C_2(G) \right] T_j.$$

d) Using this (or otherwise?) show that if the generators in the fundamental are normalized with $C(N) = \frac{1}{2}$ then $C(G) = C_2(G) = N$.

Problem 3

[30=5+5+5+5+5+5 pts] a) Starting from the Lorentz algebra and defining $J_i \equiv \frac{1}{2} \epsilon_{ijk} M_{jk}, K_i \equiv -M_{0i}$ and $\mathcal{J}_i^{\pm} \equiv \frac{1}{2} (J_i \pm i K_i)$, show that

$$[\mathcal{J}_i^{\pm}, \mathcal{J}_j^{\pm}] = i\epsilon_{ijk}\mathcal{J}_k^{\pm}, [\mathcal{J}_i^{\pm}, \mathcal{J}_j^{\mp}] = 0.$$

b)Show that if χ_L is in the $(\frac{1}{2}, 0)$ representation, $\epsilon \chi_L^*$ (here $\epsilon = i\sigma_2$) is in the $(0, \frac{1}{2})$ representation (i.e. it transforms like χ_R). c) Show that $\mathcal{L} = -\frac{1}{2}m\bar{\psi}_M\psi_M = m(\psi_L^T\epsilon\psi_L - \psi_L^\dagger\epsilon\psi_L^*)$ where ψ_M is the four component Majorana spinor and ψ_L is a left chiral Weyl spinor. d) Show that $(\psi_D^c)^c = \psi_D$. e) Show that $\mathcal{L} = -m[(\psi_D^c)_L^T C(\psi_D)_L + h.c.)$ is a Dirac mass term and that $\mathcal{L} = -m[\psi_{DL}^T C\psi_{DL} + h.c.)$ is a Majorana mass term. Here ψ_D is a four component Dirac spinor and C is the charge conjugation matrix. e) Show that if $\psi_D^c = \psi_D^c$ then $\psi_D = \psi_M$. f) Show that $\mathcal{L} = -\frac{1}{2}m(\overline{\psi_D^c})_R^2\psi_{DL} + h.c.)$ is a Majorana mass.

(20 lutions) HWI Set q=0 $g(\theta)g(0)=g(\theta)-g(g(\theta_0))$ (a) f(0) = 1=) $3(\theta,0) = \theta$ Similarly ($\theta=0$) $\theta=0$ b) glo)(gla) glu)) = glo) g(z(a, u)) - g(ztzlau), $= \Im (\Im (\theta, \Im (\theta, \psi)))$ Associationity $= (3(9/9(4))^{3}(1)) = 3(3(3(9,9),4))$ $3(\theta, \overline{3}(\theta, \gamma)) = 3(\overline{3}(\theta, \varphi), \gamma)).$ tor rest see foll pages -

-ie Group is a continuous group with the composition defined by a continuous ly differentiable (ie 3 is continuous & differentiable map. Generator $\chi(\theta) = i g(\theta) \partial_i g(\theta)$ i=1,...generatori 1 Lie Group gze x.pr a infinitesimal (i.e near the identity) For B Hze Xil write $g(\theta) = e + i \sum \theta^{i} \chi_{i}(0) \rightarrow g^{-1}(\theta) = e - i \sum \theta^{i} \chi_{i}(0)$ $(for SO(2)) X = S_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$)) Clearly X = i g 2 g Product g(q) g(B) g'(D) g'(D) - commutato Must group element Ne a $\mathbf{X}' = A' + B' \cdot \theta' + B''$ Kear identity From boundary conditions Rad ie. X St Cil D' P'

 $g(q) g(0) g'(q) g'(8) = (e + i q' X_{r'})(e + i \theta^{4} X_{r'})$ (e-i@ X;) (e-i 8 " X;;;) ser then $\begin{pmatrix} e + iq^{i} X_{i} + i\theta^{h} X_{h} = Iq^{i}\theta^{h} X_{i} X_{h} + ... \end{pmatrix}$ $\begin{pmatrix} e - iq^{i} X_{j} - i\theta^{h} X_{h} = Iq^{i}\theta^{h} X_{j} X_{h} + ... \end{pmatrix}$ = $(e + q^{j} \theta^{h} X_{i} X_{n} + \phi^{j} \theta^{h} X_{h} X_{j})$ - 2 q + X, X, = e + & qh [X,, Xk] + ... $= \Im(5) = e + i c^{l} \mathcal{P}^{2} \mathcal{P}^{4} X_{l}$ So [X, Xn] = i C^L, X_L C¹_{in} = - C¹_{ij} X_L From All Jacobi identity structure constants. [X j [X n, X,]] + [X, [X e, X,]] + [Xe, [X, X_k]]=0 $C_{jh}^{m}C_{lm}^{h}+C_{kl}^{m}C_{jm}^{n}+C_{lj}^{m}C_{hm}^{n}=0, \quad -(J)$ ctor space where being spann called the Lie algebra Satisfying (A) 1 spanned 4 2xiz た。 a of the group. G. The structure contants C'il specific the Lie group

SU(n) as a transprington group. The graph of nxn ummy matices can be consider an transformation transformation n - dimensional erroup acting on a complex vector space. W; e¢ $\Psi = \begin{pmatrix} \Psi_{i} \\ \vdots \\ \Psi \end{pmatrix}$ y - y/ = y y U e SU(n). Vi = Vij Vj det $\mathcal{U} = 1$ The Clearly the scalar product N left invariant by then tramfumation (4 > 24 4 -> 21 q). yt yt + yt The unjujute vector Use ful to write $p^2 = \psi_z^*$ and $\mathcal{U}_{j}^{i} = \mathcal{U}_{ij}$ $\mathcal{U}_{j}^{i} = \mathcal{U}_{ij}^{i} = \mathcal{U}_{ji}^{i}$ 50 $\psi_i \rightarrow \psi'_i = \psi_i^{\prime} \psi_i$ $\mathcal{H}_{i} \mathcal{H}^{2} \rightarrow \mathcal{H}^{\prime 2} = \mathcal{U}^{2} \mathcal{H}^{2} =$

The such invert sealar product, $\psi^{\dagger} \varphi = \psi' \varphi_{s}$ $\mathcal{U}\mathcal{U}^{\dagger} = \mathcal{U}_{ij}\mathcal{U}^{\dagger}_{ij} = \mathcal{U}_{ij}\mathcal{U}^{\dagger}_{ij} = \mathcal{U}_{ij}\mathcal{U}^{\dagger}_{ij}$ Unimig h= Q US U. 4 = St Szk Sim lach In This not " centration of summatic upper a cower indices incr ie centraided indices as in 4-vector notation for space-time indices The vectors y a pine basis for definite the fundamental or definity representation of Suco). 4; → 21; j 4; 4° → 22; 20 Check as comaine. 4 y - 2 212 21; 4 7 = 24 26 4 24 (banis for) Vi - i defining (fundamental) ref. Higter y² - conjugate ref ψ_i Higher rank tensors transform is $\mathcal{U}_{j,j_{2},\dots,j_{R}}^{(2,j_{2},\dots,2)} = \left(\mathcal{U}_{p}^{(2,j_{1},\dots,2)}\mathcal{U}_{p}^{(2,\dots,2)}\right)\left(\mathcal{U}_{j,\dots,1}^{(2,\dots,2)}\mathcal{U}_{j,\dots,1}^{(2,\dots,2)}\right)\left(\mathcal{U}_{j,\dots,1}^{(2,\dots,2)}\mathcal{U}_{j,\dots,1}^{(2,\dots,2)}\right)$ 4 j. i This is in general a reducible representation).

 $\overline{I_{\pm\pm}} = O_{\pm} Z_{\pm} O_{\pm} Z_{\pm} - \sqrt{\frac{1}{2}} O_{\pm} Z_{\pm} O_{\pm} D_{\pm} O_{\pm} O_{\pm} D_{\pm} O_{\pm} O_{$ E): Totally and symm in the tener $E_{1,...,2n} = e^{2,...,2n}$ = 1 (1... 2) lng $E_{i_1\cdots i_n} = \mathcal{U}_{i_1}^{i_1}\cdots \mathcal{U}_{i_n}^{i_n} E_{i_1\cdots i_n}$ =-1 1dd. = 0 1/ 3 = 2 c $= (det \mathcal{U}) \in_{i_1, \dots, i_M} = \in_{i_1, \dots, i_M}$ sine det $\mathcal{U} = \mathcal{I}$. for my h, h. Lan raise & lower indices using Etenin. E^{2, 22 27} $\psi_{i_2,...,i_n} = \psi_{-1} \psi_{-1}^{2}$ etz . hled shidy tenin with all love or all upperidies. Note $\gamma = e^{2i - 2n} \gamma_{in - 2n}$ in an invariant of SUCAD. These tensors takes for reducible reps The reason is that permatution of indites (all uph or luver) commit with Graup transfination So tenimi interchaniancia cohore indeces the perm" form an Reprimeducible repring group transform ver amongst themselves under SUM) transformation. This in be came the transformation Jaw in has products of

U's. Simplest example - 2rd rank terron. Y" > x's = U' L' e Yhe $\psi^{ij2} = \mathcal{U}_{\ell}^{\dagger} \mathcal{U}_{\mu}^{2} \psi^{\ell k} = \mathcal{U}_{\mu}^{i} \mathcal{U}_{\lambda}^{j} \psi^{\ell k}$ $P_{12} \psi^{23} = \psi^{32}$ 1 P12 4121 = U2 U2 P2 4th Piz commutes with Gray trans law. Sym & Anti symme tensions. Define $\psi_{+}^{ij} = \pm (\gamma_{+}^{ij} + \gamma_{-}^{ji}) \qquad \psi_{-}^{ij} = \pm (\gamma_{+}^{ij} - \gamma_{+}^{ji})$ $P_{12} \mathcal{U}_{+}^{'j} = + \mathcal{U}_{+}^{'j}$ P+ 4'' = - 4'j do not mix under Clenn Y+ . 4-SU(n) tranf in muching 2nd rant tenin fines reducible ref Ŕ. N' are the (bain for) irr. rep. Young tableaux - pine a such to the penerd problem of finding IR's 1 Sn. Cherolike With

Pooblem Solution I NE * EAB YA -> MA BAYB NA MEAB YR. Va MA YEEAB ME ND MACMBDEAB My det M ECD VCHD = VEER Sing det M=1 MAL DE TH $\chi_{\perp} \rightarrow e^{-\frac{1}{2}\vec{\sigma}_{1}\vec{\eta}}$ $\sigma_2^* = -\sigma_2 \qquad \sigma_2 \sigma_1^* \sigma_2 = -\sigma_2$ 020002 = - 03. $\sigma_2 \sigma_1^* \sigma_2 = -\sigma_2, \quad \sigma_2 \sigma_2^* \sigma_2 = -\sigma_2,$ 0201 - - 0: 02 $i \sigma_2 \gamma_{\perp}^* \rightarrow i \sigma_2 e^{2}$ · 2,* $e^{\pm i \underline{S} i \underline{S}^{l}} \underline{S}^{l} \underline{S}^{l} \underline{S}^{l}$ $i\sigma_{1}\chi_{1}^{*} \rightarrow i\sigma_{2} e^{2i\eta_{1}}\chi_{1}^{*}$ $= e^{-\frac{\varphi}{2}\eta i}\chi,$

 $T = G \quad i(T_{i}^{(0)})_{ik}^{(0)} = C(r) \delta_{ij}^{-1}; \quad T^{2}_{ij}^{(0)} = \frac{diwb}{Z} T_{i}T_{i} = C(r) I$ $= \frac{1}{Z} T_{i}T_{i} = C(r) I$ = -A $i(T_{i}^{(0)})_{ik}^{0} = C_{ijk} \cdot - adjoint ref.$ = Cish Clik = (2G) Sil . - (B) Taking the trace of the second relation in (2) and using the 1st We set $d(r) C_2(r) = 16|C(r) - \textcircled{3}$ 161 = dm G. Normalise senentions of SCND in fundamental repla-M $C(N) = \frac{1}{2} = 0 C_2(N) = (N^{2}-1) 1$ 4 B) Any plx matrix can be exposended in terms of the 13-1 zenerators und the unit matrix " (a - linear independent matrices (or thornorm)) if 7 - 1 Note Tr T_= O Tr 1 = N. (in formdametal) $J.e \ \underline{M} = \alpha_i T_i + u \ \underline{1}_{(NTN)}$ a = Tru/Nfrom 1st eq n (A). $H_{\tau}T_{j}U = a_{i}t(T_{j}T_{i}) = \pm a_{i}$

$$\int \left(\frac{1}{1} + \frac{1}{1} \left(\frac{1}{1} \right) \right) = C(1) S_{11}^{2} + \frac{1}{1} + \frac{1}{2} + \frac{1}$$

 $\overline{Tr} \overline{T}, \underline{\mathcal{U}} = \underline{\alpha}; \overline{Tr} \overline{T}; \overline{T}; \overline{T} = \underline{\alpha}; \underline{\sigma} \downarrow$ a: = Ir J. U $\underline{\mathcal{U}} = (\overline{zTr} \, \mathcal{U} \, T_{\overline{z}}) T_{\overline{z}} + \overline{Tr} (T_{\overline{z}} \, \mathcal{U} \, \mathcal{U}) \frac{\mathcal{U}}{\mathcal{U}}$ Ung = 2. Upr(Ii) rs(Ii) + Uxx Sds D = (100) = (2 100 5/350 - 2 (1.) 10/1/18 - 1 5 (5 5 ds) = - 0 (7), (7), = = = (3, 5, 5 - - 5, 5, 5, 5)

Le l'entre l'étres l'étres de	
La p = TTTT + NT	
A CONTRACT OF A	
Kunst Walth Mr. + Marsh	
enter sa enter satere es	
an with the second of a specialized	

= iT & sick Tk + C2(r). 1 T' $T_{161jh}^{i} = +i S_{ijh}^{i}$ $= C_2(r), 1$ r= 6 5ad 5bd = C2(5) $T'T'T' = filt T_i T_k + C_2 G)T'$ = 5 2 [TiTk] + C2() T = if oik if filt The the COM $= \left[-\frac{1}{2} C_2(G_1) T + C_2(T) \right] T^{\frac{1}{2}}$ $\frac{-i(F)}{AB} - \frac{i(F)}{2} = \frac{1}{2} \left(\frac{\delta_{8}}{\delta_{8}} \frac{\delta_{7}}{N} - \frac{1}{N} \frac{\delta_{45}}{\delta_{7}} \frac{\delta_{78}}{N} \right)$ $T^{i}T^{j}T^{i} = \begin{bmatrix} -\frac{1}{2} C_{2}(G) + C_{2}(F) \end{bmatrix} T J$ $T_{dp}^{i} T_{pr}^{j} T_{rs}^{i} = \frac{1}{2} \left(\delta_{ds} \delta_{pr} - \frac{1}{N} \delta_{dp} \delta_{rs} \right) T_{pr}^{j},$ $= \frac{1}{2} \left(\frac{1}{10} - \frac{1}{10} \frac{1}{48} \right) = \left(-\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{6} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right)^{2} \right)$ $-\frac{1}{2}C_{2}(A) + \frac{N^{2}}{2N} = -\frac{1}{2N} = -\frac{1}{$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

Sol I Mayarana man term: $N_M Y_M = (N_L, N_L E^{\dagger}) \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} N_L \\ E \end{pmatrix} \begin{pmatrix} 0 \\ E \end{pmatrix} \begin{pmatrix} N_L \\ E \end{pmatrix}$ NM= CAL* $=(\gamma_{L}^{\prime},\gamma_{L}^{\prime})$ $\left(\begin{array}{c} \mathcal{E} \psi_{L}^{*} \\ \mathcal{M} \end{array} \right)$ - VEY + NTENT $V_{D} = \begin{pmatrix} \mathcal{H}_{L} \\ \mathcal{E}_{L}^{*} \end{pmatrix}$ Dirac Man tam. (Alt rep). $\Delta L = -m(\mathcal{H}_{D}^{*}) \stackrel{\mathcal{C}}{\underset{L}{}} C \stackrel{\mathcal{H}}{\underset{L}{}} + h.C.$ $= (\chi_{\perp}^{\top}, \psi_{\perp}^{\dagger} e^{\top}) \pm (1 - \Im_{5})$ NZ) $P_{i=}(v)$ (χ_{L}^{T}, O) $\Delta L = -m \left(\chi_{L}^{T}, \upsilon \right) \begin{pmatrix} -\varepsilon & \upsilon \\ \upsilon & \varepsilon \end{pmatrix} \begin{pmatrix} w_{L} \\ \upsilon \end{pmatrix} + h.c.$ $m \chi T \in \Psi, + h.C.$ Dirac Ma (as shown in notes) - m 44 $= -\frac{1}{2}m\left(Y_{DL} \subset Y_{DL} + h. c.\right) = -\frac{1}{2}m\left((N_{L}^{T}, 0) \begin{pmatrix} -6 & 0 \\ 0 & e \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & e \end{pmatrix} \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & Y_{L} \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & Y_{L} \end{pmatrix} \end{pmatrix} \begin{pmatrix} Y_{L} \\ 0 & Y_{L} \end{pmatrix} \end{pmatrix} \begin{pmatrix}$ sh M (VEY + h.c.) Mayrang mass VD=VA Then VD= YM $\gamma_0 = \begin{pmatrix} \chi_L \\ \kappa_0 \downarrow \chi \end{pmatrix} = \gamma_0 = \begin{pmatrix} \chi_L \\ -\chi^* \end{pmatrix} = \forall$ RE= NL =D ND 2 MM

 $C = \begin{pmatrix} -i\delta_2 & 0 \\ 0 & i\delta_2 \end{pmatrix} \begin{pmatrix} 0 & \sigma & M \\ -i\delta_2 & 0 \\ \sigma & 0 \end{pmatrix} \begin{pmatrix} -i\delta_2 & 0 \\ \sigma & 0 \end{pmatrix} \begin{pmatrix} -i\delta_2 & 0 \\ \sigma & 0 \\ \sigma & 0 \end{pmatrix}$ CYM ~= (1,5') = (-102 0 $\begin{pmatrix} 0 & i \delta^{M} \delta_{2} \\ -i \delta^{M} \delta_{3} & 0 \end{pmatrix}$ GM= (I,-6') $\begin{pmatrix} \sigma_{2} & \sigma_{2} \\ \sigma_{2} & \sigma_{2} \end{pmatrix} = + \begin{pmatrix} \sigma_{2} & \sigma_{2} \\ \sigma_{1} & \sigma_{2} \end{pmatrix}$ 5 (-C) (525 (52) 52 0 52=-0 = - 5 837 $e_2e_2^2 = e_2^2$ $Y^{\mu}T$. $Y^{\mu}=\begin{pmatrix} 0 & 5^{\mu} \\ 6^{\mu} & 0 \end{pmatrix}$ ET = -6 ET =7 - 72T ≠ °= · C = - C - I 1, 6=102 $C^{\dagger} = \begin{pmatrix} -t^{\dagger} \\ t \end{pmatrix} = \begin{pmatrix} +\epsilon \\ -\epsilon \end{pmatrix} = -\epsilon,$ Et = -i 02 εT $(\gamma_0^c)^c = \gamma_D$ $\mathcal{O}_{2}=\begin{pmatrix} v-i\\ i\\ m \end{pmatrix}$ $\left(\Psi_{p}^{c}\right)^{c} = C \gamma^{0} \Psi^{c*} = C \gamma^{0} c^{*} \gamma^{0} \psi$ 6, 1 = = 52 61=61 $= CYCY'\Psi = -CY'C'Y'Y$ Oz= Sn = + yot yo y = yo2y = 24

IIIa $\Delta \chi = -m\gamma_{p}\gamma_{p} = -\frac{1}{2}m\left(\gamma_{p}\gamma_{p}+\bar{\gamma}_{p}\gamma_{p}^{c}\right)$ $Y^{C} = CY^{o}Y^{*}$ $Y^{e} = Y^{T}Y^{o}C^{T}$ TYC YC = YT YO CTCYOY * VTY°(-Y°)Y°N* - VTY°N* $= - (\psi^T \gamma^0 \psi^*)^T = \psi^T \gamma^0 \psi$ $\frac{Alt}{-\gamma'\gamma'\gamma^* = -\gamma_{\chi}\gamma^{ods}\gamma^*$ y * y o #pd y = y y.) TOT-YO 50 y cy c = y y, 5'hw - $m \overline{y}_{D} y_{D} = -\frac{m}{2} \left(\overline{y}_{M}^{\prime} + \overline{y}_{M}^{2} + \overline{y}_{M}^{2} \right)$ N/M = 1 (N/ + 1/ C). Write $\chi_{\mu}^{2} = \pm (\chi - \chi C).$ $(\Psi_M)^c = \frac{1}{\sqrt{2}} (\Psi_0^c + (\Psi_0^c)^c) = \Psi_M$ $(\gamma_{\mu}^{2})^{c} = \frac{1}{2}(\gamma_{b}^{c} - (\gamma_{b}^{c})^{c}) = -\gamma_{\mu}^{2}$

TV $\mathcal{N}_{D} = \begin{pmatrix} \mathcal{N}_{L} \\ \boldsymbol{\epsilon} \boldsymbol{\chi}_{*} \end{pmatrix} \qquad \mathcal{N}_{D}^{c} = \begin{pmatrix} \boldsymbol{\chi}_{L} \\ \boldsymbol{\epsilon} \boldsymbol{\chi}_{*} \end{pmatrix}.$ Note. Show $\Delta I = -\frac{1}{2}m\left((\gamma_0)_R\gamma_L + h.c.\right)$ is a majorana mass. $(\overline{\mathcal{N}}_{p})_{R} = \mathcal{N}_{DR} \stackrel{c^{\dagger}}{}_{V} = (G, \mathfrak{N}_{L} \stackrel{c^{\dagger}}{}_{E})(\widetilde{I}_{V})$ $= - \left(- \psi_{L}^{T} \in , 0 \right)$ $\gamma_{0\perp} = \begin{pmatrix} \gamma_{\perp} \\ 0 \end{pmatrix}$ $(\chi_{p}^{c})\chi_{p} = -\chi_{L}^{T} \in \chi_{L}$ $S_{U} \Delta L = \frac{1}{2}m \left(\gamma_{L}^{T} \in \gamma_{L} + h.c. \right)$