HW1 - Phys 7810-001

due 02/04/21

Problem 1

$[40=2+3+5+5+5+20 \mathrm{pts}]$ The composition law of a Lie group is given by $g(\theta) g(\phi)=g\left(\xi(\theta, \phi)\right.$ where $\theta=\left\{\theta^{i}\right\}, \phi=\left\{\phi^{i}\right\}$ are n-dimensional parameter vectors and $\xi=\left\{\xi^{i}\right\}$. Show that a) $\xi(\theta, 0)=\xi(0, \theta)=\theta$. b) $\xi(\theta, \xi(\phi ; \psi))=$ $\xi(\xi(\theta, \phi), \psi)$. c) Write

$$
g(\phi) g(\theta) g^{-1}(\phi) g^{-1}(\theta)=g(\chi(\theta, \phi)) .
$$

Show that near the identity element $\chi^{i}=c_{j k}^{i} \theta^{j} \phi^{k}$. d) By evaluating the commutator $g(\phi) g(\theta) g^{-1}(\phi) g^{-1}(\theta)$ show that the generators satisfy the commutation relations $\left[X_{j}, X_{k}\right]=i c_{j k}^{l} X_{l}$. e) Deduce that $c_{j k}^{l}=-c_{k j}^{l}$, and that $c_{j k}^{m} c_{l m}^{n}+c_{k l}^{m} c_{j m}^{n}+c_{l j}^{m} c_{k m}^{n}=0$. f) For a matrix group we define the Cartan-Killing metric on the Lie algebra by $g_{i j}=\operatorname{tr}\left(X^{i} X^{j}\right)$. i) Show that $c_{i j k} \equiv g_{i l} c_{j k}^{l}$ is totally anti-symmetric in i, j, k. ii) If $U=e^{i H}$ is a unitary matrix with $\operatorname{det} U=1$, show that $\operatorname{tr} H=0$. g) Let ψ, ϕ, \ldots be vectors in the space of n-dimensional column vectors ($\psi=\left\{\psi_{a}\right\}$ etc.) which carry an n -dimensional unitary representation of some Lie group. Suppose the group elements $\{g\}$ of a group of unitary transformations on this vector space are given in some unitary representation by the matrices $D(g)$. i) Show that the totally anti-symmetric tensor $\epsilon_{i_{1} \ldots i_{N}}= \pm 1$ (with upper(lower) sign for even(odd) permutations of $1,2, \ldots, N$) is an invariant of the group $S U(N)$. ii) Suppose the vector $\psi=\left\{\psi_{i}, i=1, \ldots, N\right\}$ is in the fundamental (defining) representation of $S U(N)$. Then the tensor $\psi_{i j}$ transforms as the direct product of $\psi \times \psi \equiv\left\{\psi_{i} \psi_{j}\right\}$. Define the permutation operator P so that $P \psi_{i j}=\psi_{j i}$. Show that P commutes with the group transformation law. Show that $\psi_{i j}$ is a reducible tensor representation by demonstrating that
the symmetric and anti-symmetric combinations $\psi_{i j}^{ \pm} \equiv \frac{1}{2}\left(\psi_{i j} \pm \psi_{j i}\right)$ do not mix under the group transformations.

Problem 2

[30=5+10+10+5 pts] For the Lie algebra of $S U(N)$ show that a) $C_{i j k} T_{j} T_{k}=$ $\frac{i}{2} C_{2}(G) T_{i}$ b) Prove the completeness relation (for the generators in the fundamental representation)

$$
\left(T_{i}\right)_{\gamma \beta}\left(T_{i}\right)_{\alpha \lambda}=\frac{1}{2}\left(\delta_{\beta \alpha} \delta_{\gamma \lambda}-\frac{1}{N} \delta_{\beta \gamma} \delta_{\alpha \lambda}\right)
$$

c) Show that in any $\mathrm{IR} r$ the generators satisfy the relation

$$
T_{i} T_{j} T_{i}=\left[C_{2}(r)-\frac{1}{2} C_{2}(G)\right] T_{j} .
$$

d) Using this (or otherwise?) show that if the generators in the fundamental are normalized with $C(N)=\frac{1}{2}$ then $C(G)=C_{2}(G)=N$.

Problem 3

$[30=5+5+5+5+5+5 \mathrm{pts}]$ a) Starting from the Lorentz algebra and defining $J_{i} \equiv \frac{1}{2} \epsilon_{i j k} M_{j k}, K_{i} \equiv-M_{0 i}$ and $\mathcal{J}_{i}^{ \pm} \equiv \frac{1}{2}\left(J_{i} \pm i K_{i}\right)$, show that

$$
\begin{aligned}
& {\left[\mathcal{J}_{i}^{ \pm}, \mathcal{J}_{j}^{ \pm}\right]=i \epsilon_{i j k} \mathcal{J}_{k}^{ \pm},} \\
& {\left[\mathcal{J}_{i}^{ \pm}, \mathcal{J}_{j}^{\mp}\right]=0 .}
\end{aligned}
$$

b)Show that if χ_{L} is in the $\left(\frac{1}{2}, 0\right)$ representation, $\epsilon \chi_{L}^{*}$ (here $\epsilon=i \sigma_{2}$) is in the ($0, \frac{1}{2}$) representation (i.e. it transforms like χ_{R}). c) Show that $\mathcal{L}=-\frac{1}{2} m \bar{\psi}_{M} \psi_{M}=$ $m\left(\psi_{L}^{T} \epsilon \psi_{L}-\psi_{L}^{\dagger} \epsilon \psi_{L}^{*}\right)$ where ψ_{M} is the four component Majorana spinor and ψ_{L} is a left chiral Weyl spinor. d) Show that $\left(\psi_{D}^{c}\right)^{c}=\psi_{D}$. e) Show that $\mathcal{L}=$ $-m\left[\left(\psi_{D}^{c}\right)_{L}^{T} C\left(\psi_{D}\right)_{L}+h . c.\right)$ is a Dirac mass term and that $\mathcal{L}=-m\left[\psi_{D L}^{T} C \psi_{D L}+\right.$ h.c.) is a Majorana mass term. Here ψ_{D} is a four component Dirac spinor and C is the charge conjugation matrix. .e) Show that if $\psi_{D}^{c}=\psi_{D}^{c}$ then $\psi_{D}=\psi_{M}$. f) Show that $\mathcal{L}=-\frac{1}{2} m \overline{\left(\psi_{D}^{c}\right)_{R}} \psi_{D L}+$ h.c.) is a Majorana mass.

HW I (solutions).
I. $\quad g(\theta) T(\theta)=g(B(\theta, Q)) \quad \theta=\left\{\theta^{2}\right\} \varphi=\{\alpha\}$.
a) Set $\quad g(0)=1 \quad g(\theta) g(\theta)=g(\theta)=g(s(\theta))$
$\quad \Rightarrow \quad \xi(\theta, 0)=\theta \quad$ Similes $\quad(\theta=0)$ $\xi(0,8)=\theta$.
b) $\quad g(\theta)(g(\varphi) g(\psi))=g(\theta) g(\xi(\varphi, \psi))$

$$
=g(\xi(\theta, \xi(\varphi, \psi))
$$

Associatity

$$
\begin{aligned}
& =(g(g)(\varphi)) g(\psi)=g(\xi(\xi(\theta, \varphi), \psi)) \\
& \Rightarrow \xi(\theta, \xi(\varphi, \psi))=\xi(\xi(\theta, \varphi), \psi)) .
\end{aligned}
$$

Fo rest se frill pages -

A Lie group is a continuous group with the composition Law
defined by a continuously differentiable
map. lie ξ is continuous diff(fentalale,
def: Generate $\quad X_{i}(\theta) \equiv i^{-1} g^{-1}(\theta) \partial_{i} g(\theta) \quad j=L_{2} \ldots n$. $-g_{2} e_{i}^{i x_{i}^{i}}$
$g^{-1}=e^{-1 x_{i}}$$\quad\left\{x_{i}\right\}$ generators of Lie Group,
 $2_{i} z=x_{i} e^{\text {tin }}$
write $\left.\quad g(\theta)=e+i \sum_{0} \theta^{j} X_{;}(\theta) \Rightarrow g^{-1}(\theta)=e-i \sum \delta^{j} X_{0}\right)$
$($ tor sol $) \quad x=\sigma_{2}=\left(\begin{array}{ll}0 & -i \\ i & 0\end{array}\right) \quad$ Clean y $x_{i}=i^{-1} g^{-1} g g$ Product $g(q) g(\theta) g^{-1}(\Phi) g^{-1}(\theta)=\frac{\text { commutator. }}{\text { of two }}$ elements,
Must he a group element $g(t)$ 位 $f^{2}(\theta, \varphi)$. Hear identity
with $f^{\prime}(0, \varphi)=f^{\prime}(\theta, 0)=0$.

$$
\begin{aligned}
& +c^{\mu_{i}} \mathrm{i}_{i} \phi^{\prime} \phi^{+}
\end{aligned}
$$

Fran bounden conditions $A=B=B^{\prime}=C^{\prime}=c^{\prime \prime}=0$ ie. $x^{t}=c_{\text {ike }}^{c} \theta^{\prime} \Phi^{k}$

$$
\begin{align*}
& g(\phi) g(\theta) g^{-1}(\phi) g^{-1}(\theta)=\left(e+i \phi^{i} x_{j}\right)\left(e+i \theta^{k} x_{t}\right) \\
& \therefore\left(e-i \phi^{\prime} x_{i}\right)\left(e-i \theta^{m} x_{i n}\right) \\
& \text { F(ensorank)hern } \\
& =\left(e+i \phi^{i} x_{j}+i \theta^{4} x_{n}=\theta \varphi^{j} \theta^{4} x_{i} x_{4}+\cdots\right) \\
& \text { ce }-i \phi^{0} x_{j}-i \theta^{4} x_{h}=i \varphi^{j} \theta^{4} x_{j} x_{4}=2 \\
& =\left(e+q^{j} \theta^{h} x_{j} X_{n}+\varphi^{j} \theta^{k} X_{k} x_{j}\right. \\
& -2 \phi^{j} \theta^{k} x_{j} x_{k} \cdots, \\
& =e+\theta^{0} \varphi^{k}\left[x_{0}, x_{k}\right] \ldots \\
& =g(\xi)=e+i d_{i k}^{l} \theta^{j} \phi^{k} x_{1} \\
& \frac{\delta_{0}}{c_{i n}^{1}=-c_{k i}^{1}}\left[X_{i}, X_{n}\right]=c_{i n}^{l} X_{l} \tag{A}
\end{align*}
$$

strintume cunstants.

$$
\begin{align*}
& {\left[x_{j},\left[x_{k}, x_{i}\right]\right]+\left[x_{k}\left[x_{l}, x_{j}\right]\right]+\left[x_{e},\left(x_{i}, x_{k}\right]\right]=0} \\
& c^{m}{ }_{j k} c_{i m}^{n}+c_{k i}^{m} c_{i m}^{n}+c_{i j}^{m} c_{4 m}^{n}=0,-(J) \tag{J}
\end{align*}
$$

The vector space whe tuin spanned $\left\{x^{\prime} \xi\right.$
sathosing (A) A called the Lie alvatra z.
of the group. G.

* The structure cantants $C_{n i t}^{i}$ shecitin the Lie groop-

SU(n) as a trampumation sroup.
The srapp of $n \times n$ unimg matices can he consider an trampormation
sroup complex

$$
\begin{aligned}
x & \text { vectur space. } \\
\psi & =\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{n}
\end{array}\right) \\
\Psi \rightarrow \Psi^{\prime} & =\mathcal{U}^{*} \psi \\
\psi_{i}^{\prime} & =u_{i j} \psi_{j}
\end{aligned}
$$

n- dimensional
$u \in S U(n)$
$\therefore u u^{\top}=u^{\dagger} u=1$
$\operatorname{det} u=1$

The Cleary the scalar product

$$
\psi^{*} \phi=\sum_{i} \psi_{i}^{*} \phi_{i}
$$

is left invariont by theer tramfunafion $(\underset{y}{ } \rightarrow \boldsymbol{u} \psi \rightarrow$ uq. .

The unpijuta vector

$$
\psi^{+} \rightarrow \psi^{\top t}=\psi^{\top} u^{t}
$$

Mseful h wite $\quad \tau^{2}=\psi_{i}^{*}$
and $\quad v_{i}{ }^{j} \equiv u_{i j}$

$$
\begin{aligned}
U_{j}^{i} & \equiv U_{i j}^{*}=u_{j i}^{\dagger} \\
& =u_{j}^{+}
\end{aligned}
$$

50

$$
\begin{aligned}
& \psi_{i} \rightarrow \psi_{i}^{\prime}=u_{i} j \psi_{i} \\
& \psi_{i} \psi^{i} \rightarrow \psi^{i}=u_{j}^{2} \psi^{j}
\end{aligned}
$$

The su(n) nivnt secar froduct,

$$
\psi^{+} \phi=\psi^{i} \varphi_{i}
$$

Unitmin $\quad U U^{\dagger}=u_{i j} U_{\text {梅 }}^{*}=u_{i}^{j u_{k}^{k}}{ }_{j}$

$$
\text { Smilach }=\text { In this not" }{ }^{15}, u_{i}^{k}=j_{i}^{k}=\delta_{2}^{k}
$$

summutic uffer or cower isdicen ie centracted indices as an 4-vector notation for sprace-tino indices
The vectors ψ give banis For dafinity the fundamental or defining representation of su(n).
Chech ascomane. $\quad \psi_{i} \rightarrow \psi_{i} i_{i} \psi_{i} \quad \psi^{2} \rightarrow \pi_{i} ; x^{j}$

$$
\begin{aligned}
& \psi^{2} \psi_{i} \rightarrow \psi^{2} u_{j}^{i} u_{j}^{k} \psi_{n}=\psi^{j} j_{i}^{4} \psi_{n} \\
&\left(\text { (anis } p_{k}\right)=\psi^{2} \psi_{j}
\end{aligned}
$$

ψ_{i} - i" definin (fundamantal) refn. congugate rep
Higher rank tensure transfonm is
(fais for)
This is in sennal a reducible repreventation).

$$
T_{ \pm \pm}=O_{ \pm} z_{+} \theta_{ \pm} z+\sqrt{\frac{14 i}{2}} \partial_{ \pm}^{2}\left(z_{+} \sim z_{1}\right)
$$

(2).: Totaly ant-snmm hiout tenier

$$
\epsilon_{1, \ldots i_{n}}=c^{n_{1} \ldots i_{n}}
$$

$$
\begin{aligned}
\epsilon_{i_{1} \ldots i_{n}}^{\prime} & =U_{i_{i}}^{i} \ldots u_{i n} i_{i_{i}, \ldots, i n} \\
& =(\operatorname{det} u) \epsilon_{i_{1} \ldots i_{n}}=\epsilon_{i} \ldots i_{n}
\end{aligned}
$$

$$
=-1 \quad \begin{gathered}
\text { asd } \\
\text { peim }
\end{gathered}
$$

$$
=0 \quad \eta \quad j_{i=2}=i_{c}
$$

$$
\text { in on } h, l
$$

sine $\operatorname{det} u=1$.
Lan raise r lower indices using E tens.

$$
\epsilon^{i_{1} i_{2} i_{1}} \psi_{i_{2}, \ldots i_{n}}=\psi^{\ddot{i}} \quad \text { etc. }
$$

need stides tenim with all lome or allugfuidios.
Note

$$
\psi=\epsilon^{2 i \cdots i_{1}} \psi_{2 ; 1,-2 i n}
$$

i an invariant. IS Su(n).
These tensers tasen fo reducitle reps
The reasen is that permutution of indiuslall ust or. Cover) cominte wita Grapt trantumation So tentons cairewharindnisorn: whore indeces foum an Refo ineducith repr of the perm" sroupe tramform sumant themselves under Sum) transfremation. Thi in he came the tramformation low in has products 1
$x^{\prime} s$.
Simplest isample - zad rank tenvos.

$$
\begin{aligned}
\psi^{i j} \rightarrow \psi^{\prime j j} & =u_{k}^{j} u_{l}^{i} \psi^{k l} \\
\psi^{i j 2} & =u_{e}^{j} u_{k}^{i} \psi^{k k}=u_{k}^{i} u_{l}^{i} \psi^{1 k} \\
\text { if } \quad P_{12} \psi^{i j j} & =\psi^{i 2} \\
P_{12} \psi^{i \ddot{j}} & =u_{k}^{i} u_{l}^{i} P_{12} \psi^{k l}
\end{aligned}
$$

P_{12} commutes wim Srouf trant law.
Define Sym o Autioyms tensens.

$$
\begin{aligned}
& \psi_{+}^{i j}=\frac{1}{2}\left(\psi^{i j}+\psi^{j i}\right) \quad \psi_{-}^{i j}=\frac{1}{2}\left(\psi^{i j}-\psi^{i 2}\right) \\
& P_{12} \psi_{+}^{i j}=+\psi_{+}^{i j} \quad P_{12} \psi_{-}^{i j}=-\psi_{-}^{i j}
\end{aligned}
$$

(lemin ψ_{+}. ψ_{-}do not mir unden $\operatorname{Su}(n)$ tranformation

$$
\psi_{ \pm}^{\prime \prime} \rightarrow \psi_{ \pm}^{\prime \prime \prime}=u_{n}^{i} u_{1}^{i} \psi_{ \pm}^{k 1}
$$

re $2^{\text {ad }}$ rant tenim gimes reducitle ref $\psi_{ \pm}^{i}$ are the (han fr) irr lef. Young tallecax. pine a suln n the ferend

His $^{*} E^{A B} y_{i}^{*} \quad$ Problem solution I
III 侎 $\rightarrow M_{A}^{B_{A}}$.

$$
\begin{aligned}
& \psi_{A} \epsilon^{A B} \psi_{B} \\
\Rightarrow & M_{A} C_{E} \epsilon^{A B} M_{B}^{D} \psi_{D} . \\
= & M_{A} C^{D} M_{B}^{D B} \quad \psi_{C} \psi_{D} .
\end{aligned}
$$

$\sin \operatorname{det} M=1=M \operatorname{det} M \in^{C D} \psi_{C} \psi_{D}=\psi_{C} \in \psi_{D}^{C D}$
sind let $H=1$

$$
\begin{aligned}
& x_{L} \rightarrow e^{i \overrightarrow{\vec{\sigma}_{,}} \vec{\theta}_{2}} \pi_{L} \\
& x_{L} \rightarrow e^{-\frac{1}{2} \vec{\sigma}_{1} \tilde{H}_{L}} x_{L} . \\
& \sigma_{2}^{*}=-\sigma_{2} \quad \sigma_{2} \sigma_{1}^{*} \sigma_{2}=-\sigma_{2} \\
& \sigma_{2} \sigma_{i}^{*} \sigma_{z}=-\sigma_{i} . \\
& \sigma_{2} \sigma_{3}^{*} \sigma_{2}=-\sigma_{3} \text {. } \\
& \sigma_{2} \sigma_{2}^{*} \sigma_{2}=-\sigma_{2} \\
& \sigma_{2} \sigma_{i}^{n}=-\sigma_{i} \sigma_{2} \\
& J: \quad i \sigma_{2} Z_{L}^{*} \rightarrow i \sigma_{2} e^{-i \sigma_{i}^{*} \theta^{*} \theta^{i}} \cdot x_{L}^{*} \\
& =e^{+i \frac{\sigma_{i}}{2}\left(\sigma_{2}\right) x_{L}^{*}}
\end{aligned}
$$

$$
\begin{aligned}
k: \quad i \sigma_{2} x_{L}^{*} & \rightarrow i \sigma_{2} e^{\frac{\sigma_{2}^{*} i}{} \eta^{i}} x_{L}^{*} \\
& =e^{-\frac{\sigma_{i}^{i} i}{i}} x_{L}
\end{aligned}
$$

i). $\operatorname{tr}\left(J_{i}^{(n)} J_{j}^{(r)}\right)=C(r) \delta_{i j} ; T^{2(r)} \equiv \sum_{i=1}^{\operatorname{dim} G} T_{i} T_{i}=C_{2}(r) I$
for $r=G$

$$
\begin{align*}
& i\left(T_{j}^{(G)}\right)_{i k}=C_{i j k} \tag{A}\\
& C_{i j h} C_{l j k}=C_{2}(G) \delta_{i l}
\end{align*}
$$

- adjoitt ref.

Tahing the trace of the secand relotion in (A) and using the t We sot $\quad d(r) C_{2}(r)=|G| C(r)-(3) \quad|G|=\operatorname{din} G$.

Noundige senectosn of $S(N)$ in fundamental rep $(x=M)$ by

$$
C(N)=\frac{1}{2} \quad \Rightarrow \quad C_{2}(N)=\frac{\left(N^{2}-1\right.}{N} \cdot \frac{1}{2}
$$

0

$$
\begin{align*}
& C_{i j h} F_{j} T_{k}=\frac{1}{2} C_{i j k}\left[T_{j}, T_{n}\right]=\frac{1}{2} C_{i j h}^{i C_{j k l}} T_{l} \\
&=\frac{i}{2} C_{2}(a) T_{l} \tag{B}\\
& \operatorname{tram}(B)
\end{align*}
$$

b) Aing matrix can he exhended in terms of the $x^{2}-1$ generatars und the unit matrix. I (a-lineas independent matrien (or thornorm B))if \rightarrow 界 Note $\operatorname{Tr} T_{i}=0 \quad \operatorname{Tr} 1=N$. (in fandametal),

$$
\begin{array}{rlr}
\text { l.e } U & =a_{i} T_{i}+u \underline{L}(N \times N) & u=\operatorname{Tr} u / N \\
\text { Hr } T_{j} u=a_{i} \operatorname{tr}\left(T_{j} T_{i}\right)=\frac{1}{2} a_{i} & \text { fran } /^{j \quad e q}{ }^{n} \tag{r}
\end{array}
$$

$$
\begin{aligned}
& \underline{u}=a_{i} I_{i}+u 1 \quad \text { Tr } 1 u=u \\
& \operatorname{Tr} T_{i} U=a_{i} \operatorname{Tr} T_{i} T_{i}=a_{i} \cdot \sigma \frac{1}{2} \\
& a_{i}=\operatorname{Tr} J_{j} U= \\
& \underline{U}=\left(\operatorname{Tr} U T_{i}\right) T_{i}+\operatorname{tor}\left(T_{r} U\right)_{\frac{1}{N}} \\
& u_{\alpha i}=2 u_{\beta}\left(T_{i}\right)_{\gamma \beta}\left(T_{i}\right)_{\alpha \delta}+u_{\gamma \alpha} \delta_{\alpha \delta}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{.}{N} \delta\left(\delta \delta_{d \delta}\right)=0 \\
& \left(I_{i}\right)_{\gamma \beta}\left(T_{i}\right)_{\alpha \delta}=\frac{1}{2}\left(\delta_{\beta \alpha_{i}} \delta_{\gamma \delta}-\frac{1}{N} \delta_{\gamma \gamma \delta} \delta_{\partial \delta}\right)
\end{aligned}
$$

$$
\frac{8}{8+6}
$$

$$
\begin{aligned}
& {\left[T_{i}, T_{j}\right]=i f_{i j k} J_{k} .} \\
& T{ }_{T} \text { TゴT }^{i}=T^{i}\left[T^{j}, T^{i}\right]+T^{i} T^{i} T^{j} \\
& =i T^{i} f^{j i k} T_{k}+C_{2}(r) \cdot \| T^{j} \\
& T_{\text {(G) })_{i L}}^{i} \text { ? }=i f_{i j h} \\
& \text { * } \sum_{i} T_{i}^{(r)} T_{i}^{(r)}=C_{2}(r) \cdot \mathbb{I} \\
& r=G \quad f^{a d} f^{b d /}=C_{2}(G) \\
& T^{i} \operatorname{Tj}^{i} T^{i}=s^{j i k} T_{i} T_{k}+C_{2}(r) T^{j} \\
& =i g^{\text {事筷 }} \frac{1}{2}\left[T_{i j} T_{k}\right]+C_{2}(r) T j^{\prime} \\
& =i f^{i j k} \frac{i}{2} f_{i k l} T^{l}+C_{2}(r) j \\
& =\left[-\frac{r}{2} C_{2}(G)+C_{2}(r)\right] T^{j} \\
& T_{\alpha \beta}^{i(F)} T_{\gamma \delta}^{i(F)}=\frac{1}{2}\left(\delta_{\alpha \delta} \delta_{\beta \gamma}-\frac{1}{N} \delta_{\alpha \beta} \delta_{\gamma \delta}\right) \\
& T^{i} T^{i} T^{i}=\left[-\frac{1}{2} C_{2}(G)+C_{2}(F)\right] T j \\
& T_{\alpha \beta}^{i} T_{\beta \gamma}^{i} T_{\gamma \delta}^{i}=\frac{1}{2}\left(\delta_{\alpha \delta} \delta_{\beta \gamma}-\frac{1}{N} \delta_{\alpha \beta} \delta_{\gamma \delta}\right) T_{\beta \gamma}^{i} . \\
& =\frac{1}{2}\left(\operatorname{DO}_{-}^{j} \frac{1}{N} T_{\alpha}^{j}\right)=\left(-\frac{1}{2} C_{2}(G)+C_{2}(B)\right) T_{\alpha \beta}^{j} \\
& -\frac{1}{2} C_{2}(G)+\frac{N^{2}-1}{2 N}=-\frac{1}{2 N} \Rightarrow C_{2}(G)=N
\end{aligned}
$$

Mganenan man ken: $\psi_{M} \psi_{M}=\left(\psi_{L}^{+}, \psi_{L}^{\top} \epsilon^{\top}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{\psi_{L}}{\epsilon \psi_{L}^{*}}$

$$
N_{M}=\binom{\alpha_{L}}{6 \psi_{L}^{*}}
$$

$$
=\left(\psi_{L}^{7}, \Psi_{L}^{\top} \epsilon\right)\binom{\epsilon \psi_{L}^{*}}{\psi_{L}}
$$

$$
=-\psi_{L}^{\top} \in \psi_{L}+\psi_{2}^{+} \in \psi_{L}^{*}
$$

$$
\psi_{0}=\binom{\psi_{L}}{\epsilon x_{L}^{*}}
$$

Dirac Man tam (Alt rep). $\Delta k=-m\left(\psi_{0}^{c}\right)_{L}^{\top} C \psi_{L}+$ hoC.

If $\psi_{D}^{c}=\psi_{D}$ Then $\psi_{D}=\psi_{N A}$.

$$
\psi_{0}^{c}=\binom{x_{L}}{\epsilon \psi_{i} *}=\psi_{0}=\binom{-\psi_{L}}{\epsilon x_{1}^{*}} \quad=\gamma \quad x_{L}=\psi_{L} \Rightarrow \psi_{D}=\psi_{M}
$$

$$
\begin{aligned}
& P_{L}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& \left(\psi_{X}^{C}\right)_{L}^{\top}=\left(x_{L}^{\top}, \psi_{L}^{\top} \epsilon^{\top}\right) \frac{1}{2}\left(1-\gamma_{5}\right) \\
& =\left(x_{L}^{\top}, 0\right) \\
& \Delta 1=-m\left(x_{L}^{\top}, 0\right)\left(\begin{array}{cc}
-\epsilon & 0 \\
0 & \epsilon
\end{array}\right)\binom{\Phi_{L}}{0}+h . c \text {. } \\
& =m x_{L}^{\top} \in \psi_{1}+b \cdot c .=\text { DiracMa } \\
& =-m \bar{\psi} \quad \text { (as shown in notes). } \\
& \Delta h=-\frac{1}{2} m\left(\psi_{D L}^{\top} C \psi_{D_{L}}+h . c .\right)=-\frac{1}{2} m\left(\begin{array}{c}
\left.\psi_{L}^{\top}, 0\right)\left(\begin{array}{cc}
-6 & 0 \\
0 & 6
\end{array}\right)\left(\psi_{L}^{\psi}\right) \\
\left.+h . c_{1}\right)
\end{array}\right. \\
& =\frac{m}{2}\left(\mathbb{T}_{2} \in \psi+h \cdot c .\right)=\text { Magrana mass }
\end{aligned}
$$

$$
\begin{aligned}
& \sigma^{M}=\left(2, \sigma^{i}\right) \\
& \sigma^{\mu}=\left(I_{-} \sigma^{\sigma}\right) \quad=\left(\begin{array}{cc}
-i \sigma_{2} & 0 \\
0 & i \sigma_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & i \sigma^{\mu} \sigma_{2} \\
-i \sigma^{\mu} \sigma_{2} & 0
\end{array}\right) \\
& \begin{aligned}
\sigma_{2} \sigma_{\sigma_{2}=-\sigma^{1,3}}^{1 / 3} \\
=-\sigma^{b / 2}
\end{aligned}=\left(\begin{array}{cc}
0 & \sigma_{2} \sigma^{\mu} \sigma_{2} \\
\sigma_{2} \sigma^{\mu} \sigma_{2} & 0
\end{array}\right)=+\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\sigma^{\mu T} & 0
\end{array}\right) \\
& \sigma_{2} \sigma^{2} \sigma^{2}=\sigma^{2} \quad=+\gamma^{\mu T} \\
& =\dot{=} \sigma^{2 T} \\
& =\sigma^{2 T} \\
& \epsilon^{T}=-\epsilon \quad \Rightarrow \quad \epsilon^{T}=-C \text {. } \\
& \begin{array}{r}
=\left(\begin{array}{ll}
0 & \sigma_{2} \sigma^{\mu} \sigma_{2} \\
\sigma_{2} \sigma^{\mu} \sigma_{2} & 0
\end{array}\right)=+\left(\begin{array}{cc}
0 & \sigma^{\mu T} \\
\sigma^{\mu} & 0
\end{array}\right) \\
=+\gamma^{\mu T} . \\
\gamma^{\mu}=\binom{0}{\sigma^{\mu}}
\end{array} \\
& \epsilon=i \sigma_{2} \quad \epsilon^{2}=-1 \\
& \epsilon^{2}=-1 \quad \Rightarrow \quad c^{2}=-1 \cdot \cdot c=-c^{-1} \\
& \epsilon^{+}=-i \sigma_{2} \\
& =\epsilon^{\top} \\
& =-\epsilon \\
& \sigma_{2}=\binom{0-i}{i} \\
& \sigma_{2}^{\top}=-\sigma_{2} \\
& \sigma_{i}^{\top}=\sigma_{1} \\
& \sigma_{3}^{\top}=\sigma_{3} \\
& C \gamma^{\mu} C=\left(\begin{array}{cc}
-i \sigma_{2} & 0 \\
0 & i \sigma_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma \\
-\mu & 0
\end{array}\right)\binom{-\sigma_{2}}{\sigma^{\mu}} \\
& c^{+}=\left(\begin{array}{ll}
-t^{t} & \\
& \epsilon^{+}
\end{array}\right)=\left(\begin{array}{ll}
+\epsilon & \\
& -\epsilon
\end{array}\right)=-C . \\
& \left(\Psi_{D}^{c}\right)^{C}=\Psi_{D} \\
& \left(\psi_{b}^{c}\right)^{c}=C \gamma^{0} \psi^{c *}=C \gamma^{0} C^{*} \gamma^{0} \psi \\
& =c \gamma^{0} c \gamma^{0} \psi=-c \gamma^{0} C^{-1} \gamma^{0} \psi \\
& =+\gamma^{0 T} \gamma^{0} \psi=\gamma^{0^{2}} \psi=\psi
\end{aligned}
$$

IH

$$
\begin{aligned}
& \text { a) } \quad 1 h=-m \psi_{B} \psi_{B}=-\frac{1}{2} m\left(\bar{\psi}_{A} \psi_{A}+\bar{\psi}_{D}^{c} \psi_{0}^{c}\right) \\
& \psi^{C}=C \gamma^{0} \psi^{*} \quad \psi^{t}=\psi^{\top} \gamma^{0} c^{+} \\
& \bar{u} C \psi C=\psi^{\top} \gamma^{0} C^{+} C \gamma^{0} \psi^{*} \\
& =\psi^{\top} \gamma^{0}\left(-\gamma^{0}\right) \gamma^{0} \psi^{*}=-\psi^{\top} \gamma^{0} \psi^{*} \\
& =-\left(\psi^{\top} \gamma^{0} \psi^{*}\right)^{\top}=\psi^{+} \gamma^{0} \psi \\
& \left(-\psi^{\top} \gamma^{0} \psi^{*}=-\psi_{\alpha} \gamma^{0 d \beta} \psi_{\beta}^{*}\right. \\
& \left.\gamma^{0 \Gamma}=\gamma^{0} \quad=\psi_{\beta}^{*} \gamma^{0 \beta \alpha} \psi_{\alpha}=\psi \psi .\right) . \\
& \Sigma \quad \bar{\psi}_{\Delta}^{c} \psi_{\Delta}^{c}=\bar{\psi}_{D} \psi_{0} \text {. } \\
& \text { Shm } \left.-m \bar{\psi}_{A} \psi_{B}=-m_{2}^{m} \bar{\psi}_{M}^{\prime} \psi_{M}^{\prime}+\bar{\psi}_{m}^{2} \psi_{\mu}^{2}\right) \\
& \text { Write } \quad \psi_{M}^{\prime}=\frac{1}{\sqrt{2}}\left(\psi_{0}+\psi_{D} c\right) \text {. } \\
& \psi_{M}^{2}=\frac{1}{1}\left(\psi_{D}-\psi_{D}^{C}\right) . \\
& \left(\psi_{m}^{\prime}\right)^{c}=\frac{1}{\sqrt{2}}\left(\psi_{0}^{C}+\left(\psi_{0}^{C}\right)^{c}\right)=\psi_{m}^{\prime} \\
& \left(\psi_{m}^{2}\right)^{c}=\frac{1}{\sqrt{2}}\left(\psi_{D}^{c}-\left(\psi_{b}^{c}\right)^{c}\right)=-\psi_{n}^{2} .
\end{aligned}
$$

Note.

$$
\begin{gathered}
\psi_{D}=\binom{\psi_{L}}{\epsilon x_{L}^{*}} \quad \psi_{D}^{C}=\binom{x_{L}}{\epsilon \psi_{L}^{*}} \\
\psi_{\mu}^{\prime}=\binom{\lambda_{L}}{\lambda_{L}^{*}} \quad \psi_{\mu}^{2}=\binom{\tilde{\lambda}_{L}^{L}}{\tilde{\lambda}_{L}^{*}} \\
\lambda_{L}=\psi_{L}+x_{L} \quad \tilde{\lambda}_{L}=\psi_{L}-x_{L} \\
\text { show } \Delta \mathcal{A}=-\frac{1}{2} m\left(\overline{\left(\psi_{D}^{c}\right)_{R}} \psi_{L L}+\text { h.c. }\right)
\end{gathered}
$$

is a magmana mass.

$$
\begin{aligned}
& \overline{\psi_{D}^{C}}=\psi_{D R}^{C+} \gamma_{0}=\left(0, \psi \psi_{L}^{\top} \epsilon^{+}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(-\psi_{t}^{\top}, 0\right) \\
& \psi_{D L}=\binom{\psi_{L}}{0} \\
& \overline{\left(\psi_{D}^{c}\right)_{R} \psi_{D L}}=-\psi_{L}^{T} \in \psi_{L} \\
& \text { Sv } \Delta L=\frac{1}{2} m\left(\psi_{L}^{\top} \in \psi_{L}+h . C .\right)
\end{aligned}
$$

