HW1 - Phys 7810-001

due 02/04/21

Problem 1

[40=2+3+5+5+5+20 pts] The composition law of a Lie group is given by $g(\theta)g(\phi) = g(\xi(\theta,\phi) \text{ where } \theta = \{\theta^i\}, \phi = \{\phi^i\} \text{ are n-dimensional parame-}$ ter vectors and $\xi = \{\xi^i\}$. Show that a) $\xi(\theta, 0) = \xi(0, \theta) = \theta$. b) $\xi(\theta, \xi(\phi, \psi)) = \theta$ $\xi(\xi(\theta,\phi),\psi)$. c) Write $g(\phi)g(\theta)g^{-1}(\phi)g^{-1}(\theta) = g(\xi(\theta,\phi))$. Show that near the identity element $\xi^i = c^i_{jk} \theta^j \phi^k$. d) By evaluating the commutator $g(\phi)g(\theta)g^{-1}(\phi$ show that the generators satisfy the commutation relations $[X_j, X_k] = ic_{jk}^l X_l$. e) Deduce that $c_{jk}^l = -c_{kj}^l$, and that $c_{jk}^m c_{lm}^n + c_{kl}^m c_{jm}^n + c_{lj}^m c_{km}^n = 0$. f) For a matrix group we define the Cartan-Killing metric on the Lie algebra by $g_{ij} = tr(X^i X^j)$. i) Show that $c_{ijk} \equiv g_{il}c_{jk}^{l}$ is totally anti-symmetric in i, j, k. ii) If $U = e^{iH}$ is a unitary matrix with det U = 1, show that trH = 0. g) Let ψ, ϕ, \ldots be vectors in the space of n-dimensional column vectors ($\psi = \{\psi_a\}$ etc.) which carry an n-dimensional unitary representation of some Lie group. Suppose the group elements $\{g\}$ of a group of unitary transformations on this vector space are given in some unitary representation by the matrices D(g). i) Show that the totally anti-symmetric tensor $\epsilon_{i_1...i_N} = \pm 1$ (with upper(lower) sign for even(odd) permutations of $1, 2, \ldots, N$) is an invariant of the group SU(N). ii) Suppose the vector $\psi = \{\psi_i, i = 1, ..., N\}$ is in the fundamental (defining) representation of SU(N). Then the tensor ψ_{ij} transforms as the direct product of $\psi \times \psi \equiv {\psi_i \psi_j}$. Define the permutation operator P so that $P\psi_{ij} = \psi_{ji}$. Show that P commutes with the group transformation law. Show that ψ_{ij} is a reducible tensor representation by demonstrating that the symmetric and anti-symmetric combinations $\psi_{ij}^{\pm} \equiv \frac{1}{2}(\psi_{ij} \pm \psi_{ji})$ do not mix under the group

transformations.

Problem 2

[30=5+10+10+5 pts] For the Lie algebra of SU(N) show that a) $C_{ijk}T_jT_k = \frac{i}{2}C_2(G)T_i$ b) Prove the completeness relation (for the generators in the fundamental representation)

$$(T_i)_{\gamma\beta}(T_i)_{\alpha\lambda} = \frac{1}{2}(\delta_{\beta\alpha}\delta_{\gamma\lambda} - \frac{1}{N}\delta_{\beta\gamma}\delta_{\alpha\lambda})$$

c) Show that in any IR r the generators satisfy the relation

$$T_i T_j T_i = \left[C_2(r) - \frac{1}{2} C_2(G) \right] T_j.$$

d) Using this (or otherwise?) show that if the generators in the fundamental are normalized with $C(N) = \frac{1}{2}$ then $C(G) = C_2(G) = N$.

Problem 3

[30=5+5+5+5+5+5 pts] a) Starting from the Lorentz algebra and defining $J_i \equiv \frac{1}{2} \epsilon_{ijk} M_{jk}, K_i \equiv -M_{0i}$ and $\mathcal{J}_i^{\pm} \equiv \frac{1}{2} (J_i \pm i K_i)$, show that

$$[\mathcal{J}_i^{\pm}, \mathcal{J}_j^{\pm}] = i\epsilon_{ijk}\mathcal{J}_k^{\pm}, [\mathcal{J}_i^{\pm}, \mathcal{J}_j^{\mp}] = 0.$$

b)Show that if χ_L is in the $(\frac{1}{2}, 0)$ representation, $\epsilon \chi_L^*$ (here $\epsilon = i\sigma_2$) is in the $(0, \frac{1}{2})$ representation (i.e. it transforms like χ_R). c) Show that $\mathcal{L} = -\frac{1}{2}m\bar{\psi}_M\psi_M = m(\psi_L^T\epsilon\psi_L - \psi_L^\dagger\epsilon\psi_L^*)$ where ψ_M is the four component Majorana spinor and ψ_L is a left chiral Weyl spinor. d) Show that $(\psi_D^c)^c = \psi_D$. e) Show that $\mathcal{L} = -m[(\psi_D^c)_L^T C(\psi_D)_L + h.c.)$ is a Dirac mass term and that $\mathcal{L} = -m[\psi_{DL}^T C\psi_{DL} + h.c.)$ is a Majorana mass term. Here ψ_D is a four component Dirac spinor and C is the charge conjugation matrix. e) Show that if $\psi_D^c = \psi_D^c$ then $\psi_D = \psi_M$. f) Show that $\mathcal{L} = -\frac{1}{2}m(\overline{\psi_D^c})_R\psi_{DL} + h.c.)$ is a Majorana mass.