HW1 - Phys 7810-001

due 02/04/21

Problem 1

$[40=2+3+5+5+5+20 \mathrm{pts}]$ The composition law of a Lie group is given by $g(\theta) g(\phi)=g\left(\xi(\theta, \phi)\right.$ where $\theta=\left\{\theta^{i}\right\}, \phi=\left\{\phi^{i}\right\}$ are n-dimensional parameter vectors and $\xi=\left\{\xi^{i}\right\}$. Show that a) $\xi(\theta, 0)=\xi(0, \theta)=\theta$. b) $\xi(\theta, \xi(\phi, \psi))=$ $\xi(\xi(\theta, \phi), \psi)$. c) Write $g(\phi) g(\theta) g^{-1}(\phi) g^{-1}(\theta)=g(\xi(\theta, \phi))$. Show that near the identity element $\xi^{i}=c_{j k}^{i} \theta^{j} \phi^{k}$. d) By evaluating the commutator $g(\phi) g(\theta) g^{-1}(\phi) g^{-1}($ show that the generators satisfy the commutation relations $\left[X_{j}, X_{k}\right]=i c_{j k}^{l} X_{l}$. e) Deduce that $c_{j k}^{l}=-c_{k j}^{l}$, and that $c_{j k}^{m} c_{l m}^{n}+c_{k k}^{m} c_{j m}^{n}+c_{l j}^{m} c_{k m}^{n}=0$. f) For a matrix group we define the Cartan-Killing metric on the Lie algebra by $g_{i j}=\operatorname{tr}\left(X^{i} X^{j}\right)$. i) Show that $c_{i j k} \equiv g_{i l} c_{j k}^{l}$ is totally anti-symmetric in i, j, k. ii) If $U=e^{i H}$ is a unitary matrix with $\operatorname{det} U=1$, show that $\operatorname{tr} H=0$. g) Let ψ, ϕ, \ldots be vectors in the space of n-dimensional column vectors ($\psi=\left\{\psi_{a}\right\}$ etc.) which carry an n-dimensional unitary representation of some Lie group. Suppose the group elements $\{g\}$ of a group of unitary transformations on this vector space are given in some unitary representation by the matrices $D(g)$. i) Show that the totally anti-symmetric tensor $\epsilon_{i_{1} \ldots i_{N}}= \pm 1$ (with upper(lower) sign for even(odd) permutations of $1,2, \ldots, N$) is an invariant of the group $S U(N)$. ii) Suppose the vector $\psi=\left\{\psi_{i}, i=1, \ldots, N\right\}$ is in the fundamental (defining) representation of $S U(N)$. Then the tensor $\psi_{i j}$ transforms as the direct product of $\psi \times \psi \equiv\left\{\psi_{i} \psi_{j}\right\}$. Define the permutation operator P so that $P \psi_{i j}=\psi_{j i}$. Show that P commutes with the group transformation law. Show that $\psi_{i j}$ is a reducible tensor representation by demonstrating that the symmetric and anti-symmetric combinations $\psi_{i j}^{ \pm} \equiv \frac{1}{2}\left(\psi_{i j} \pm \psi_{j i}\right)$ do not mix under the group
transformations.

Problem 2

$[30=5+10+10+5 \mathrm{pts}]$ For the Lie algebra of $S U(N)$ show that a) $C_{i j k} T_{j} T_{k}=$ $\frac{i}{2} C_{2}(G) T_{i}$ b) Prove the completeness relation (for the generators in the fundamental representation)

$$
\left(T_{i}\right)_{\gamma \beta}\left(T_{i}\right)_{\alpha \lambda}=\frac{1}{2}\left(\delta_{\beta \alpha} \delta_{\gamma \lambda}-\frac{1}{N} \delta_{\beta \gamma} \delta_{\alpha \lambda}\right)
$$

c) Show that in any IR r the generators satisfy the relation

$$
T_{i} T_{j} T_{i}=\left[C_{2}(r)-\frac{1}{2} C_{2}(G)\right] T_{j} .
$$

d) Using this (or otherwise?) show that if the generators in the fundamental are normalized with $C(N)=\frac{1}{2}$ then $C(G)=C_{2}(G)=N$.

Problem 3

$[30=5+5+5+5+5+5 \mathrm{pts}]$ a) Starting from the Lorentz algebra and defining $J_{i} \equiv \frac{1}{2} \epsilon_{i j k} M_{j k}, K_{i} \equiv-M_{0 i}$ and $\mathcal{J}_{i}^{ \pm} \equiv \frac{1}{2}\left(J_{i} \pm i K_{i}\right)$, show that

$$
\begin{aligned}
{\left[\mathcal{J}_{i}^{ \pm}, \mathcal{J}_{j}^{ \pm}\right] } & =i \epsilon_{i j k} \mathcal{J}_{k}^{ \pm}, \\
{\left[\mathcal{J}_{i}^{ \pm}, \mathcal{J}_{j}^{\mp}\right] } & =0 .
\end{aligned}
$$

b)Show that if χ_{L} is in the $\left(\frac{1}{2}, 0\right)$ representation, $\epsilon \chi_{L}^{*}$ (here $\left.\epsilon=i \sigma_{2}\right)$ is in the $\left(0, \frac{1}{2}\right)$ representation (i.e. it transforms like χ_{R}). c) Show that $\mathcal{L}=-\frac{1}{2} m \bar{\psi}_{M} \psi_{M}=$ $m\left(\psi_{L}^{T} \epsilon \psi_{L}-\psi_{L}^{\dagger} \epsilon \psi_{L}^{*}\right)$ where ψ_{M} is the four component Majorana spinor and ψ_{L} is a left chiral Weyl spinor. d) Show that $\left(\psi_{D}^{c}\right)^{c}=\psi_{D}$. e) Show that $\mathcal{L}=$ $-m\left[\left(\psi_{D}^{c}\right)_{L}^{T} C\left(\psi_{D}\right)_{L}+h . c.\right)$ is a Dirac mass term and that $\mathcal{L}=-m\left[\psi_{D L}^{T} C \psi_{D L}+\right.$ $h . c$.) is a Majorana mass term. Here ψ_{D} is a four component Dirac spinor and C is the charge conjugation matrix. .e) Show that if $\psi_{D}^{c}=\psi_{D}^{c}$ then $\psi_{D}=\psi_{M}$. f) Show that $\mathcal{L}=-\frac{1}{2} m \overline{\left(\psi_{D}^{c}\right)_{R}} \psi_{D L}+$ h.c.) is a Majorana mass.

